Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Miniaturisierung in der Analytik - Kleinster Prozess-Gaschromatograph der Welt

15.04.2003


Kleinster Prozess-Gaschromatograph der Welt


Siemens treibt die Miniaturisierung in der Analytik weiter voran. Das Unternehmen stellt jetzt einen Gaschromatographen für industrielle Prozesse vor, der nur noch die Größe eines Fußballs hat. Bisher sind diese Geräte in großen Schränken untergebracht. Das Gerät MicroSAM ist explosions-geschützt und so robust, dass es direkt an der Probenentnahmestelle montiert werden kann. Es wird erstmals auf der weltgrößten Chemiefachmesse Achema vom 19. bis 24. Mai in Frankfurt gezeigt.

... mehr zu:
»MicroSAM

Bei der Überwachung einer chemischen Reaktion, der Qualität eines Produkts oder der Kontrolle von Erdgas spielt die Gaschromatographie eine bedeutende Rolle. In diesen Geräten strömt ein aufgeheiztes Gasgemisch mit einem Trägergas durch ein Trennsystem beschichteter Röhrchen. An der Beschichtung haften die einzelnen Komponenten des Gasgemisches unterschiedlich gut. Dadurch verweilen sie unterschiedlich lang in den Röhrchen, bis sie am Ende nacheinander von einem Detektor erfasst werden. Der Rechner des Chromatographen bestimmt dann die Konzentration der Komponenten.

Schlüsselbauteile des Geräts sind die Detektoren, die Dosierung für die Gase und das Trennsystem. Sie sind nur so groß wie ein Fingernagel und bestehen aus Silizium mit haardünnen Kanälen. Absolut neu ist, dass die Technik ohne bewegliche Ventile auskommt. Nur über die computergesteuerte Änderung von Drücken werden die Gase in die Trennschleife eingeschleust. Damit können kleinste Mengen Probe in extrem kurzer Zeit dosiert werden, was eine besonders hohe Trennschärfe ergibt. Die Dauer der Messung hängt unter anderem von der Länge der Röhren ab; klassische Chromatographen liefern Ergebnisse nach etwa zehn Minuten, in denen keine andere Probe bestimmt werden und der Prozess theoretisch aus dem Ruder laufen kann. Mit dem MicroSAM (Single Analyzer Module) dauert ein Chromatogramm nur noch etwa zwei Minuten. Die Messkammern der Detektoren sind ein weiteres Highlight der Mikrotechnik: Sie sind einen Millimeter lang und enthalten jeweils einen 0,3 Mikrometer dicken Golddraht - etwa 200 Mal dünner als ein Haar. Der Draht ist etwa 100 Grad heißer als das ihn umströmende Trägergas. Wenn eine Komponente des Messgases am Detektor vorbeifließt, ändert sich spezifisch die Temperatur am Draht und damit auch der Widerstand. Die Elektronik des MicroSAM wandelt das in ein Signal um und liefert einen Konzentrationswert.


Die Neuentwicklung von Forschern in Karlsruhe und Berlin bietet wegen der ausgefeilten Mikrotechnik bei einem günstigen Preis eine besonders hohe Leistung. Im Gegensatz zu seinem großen Bruder Maxum Edition II ist MicroSAM nur für die Analyse gasförmiger Proben gedacht. Klassische Chromatographen wie Maxum sind dagegen sehr modular aufgebaut, um damit alle Anforderungen der Chemie und Petrochemie abzudecken. MicroSAM ist für die großen Chromatographen eine ideale Ergänzung.

Dr. Norbert Aschenbrenner | Siemens AG
Weitere Informationen:
http://www.siemens.de

Weitere Berichte zu: MicroSAM

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics