Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Präzise Ortung und Navigation im Zentimeterbereich

25.03.2003


Schema einer 3-D- Positionserkennung


FMCW-Prinzip zur Entfernungsmessung


Systeme zur Positionserkennung gewinnen zunehmend an Bedeutung für Steuerungs- und Überwachungsvorgänge. Je nach Anwendung sind hierbei sehr hohe Präzison und Messwiederholrate gefordert, was das Institut für Elektrische Informationstechnik der TU Clausthal in Kooperation mit der Siemens AG in München veranlaßt hat, ein neuartiges System für kommerzielle Anwendungen zu entwickeln.


Das System wird auf Hannover Messe (7. - 12. April) auf dem Gemeinschaftsstand Mikrosystemtechnik, Halle 6, Stand B02, zu sehen sein.

Die präzise dreidimensionale Positionserkennung im Zentimeterbereich basiert auf Hochfrequenz (HF)- FMCW-Radar (Frequency Modulated Continous Wave) und einen aktiven Transponder.


Berührungslose Positionserkennungssysteme in vergleichbarer Präzision sind auf dem Markt bislang nicht verfügbar. Sie stellen ein Novum für exakte Navigation in Räumen, Hallen oder maschinellen Anlagen dar. Ein Prototyp ist bereits vorhanden und erfolgreich getestet. Dieses System entspricht quasi einem autarken GPS im kleinen Maßstab mit höherer örtlicher Genauigkeit sowie hoher Meßrate (Echtzeitfähigkeit) und zusätzlichen Möglichkeiten zur Datenübertragung Ein derartiges System bietet zahlreiche Einsatzmöglichkeiten, zum Beispiel:

  • Robotersteuerung/-regelung durch Messung der räumlichen Position, zum Beispiel eines Armes
    Computer-Augmented-Reality
  • "Virtuelle Maus", der Vektor eines Zeigestocks und somit seine Richtung wird bestimmt; einsetzbar auf Messen zur Auswahl auf großen Informationsleinwänden
  • Überwachung von Personen oder Objekten in sicherheitsrelevanten Bereichen
  • Untersuchung der Lauf- oder Flugbahn bewegter Zielobjekte mit gleichzeitiger Bestimmung ihrer Geschwindigkeit durch den Doppler-Effekt

Das System besteht aus mindestens drei Hochfrequenz-Sende- und Empfangsstationen, die bekannte räumliche Koordinaten besitzen. Sie befinden sich beispielsweise in der zu überwachenden Halle. Zusätzlich gibt es einen aktiven, am Zielobjekt befestigten Transponder. Dessen Koordinaten gilt es zu bestimmen.

Die Positionserkennung basiert auf dem Radarprinzip. Dabei wird ein HF-Signal ausgesandt, vom aktiven Transponder empfangen, verstärkt, moduliert, reflektiert und schließlich in der Basisstation mit dem ursprünglich ausgesandten Signal gemischt.

Nach dem Mischvorgang erhält man ein Spektrum mit zwei Spektrallinien, deren gegenseitiger Abstand proportional zur Entfernung zwischen Basisstation und Transponder ist. Durch Messung der Entfernung durch mindestens drei solcher Sende-Empfangs-Stationen lässt sich über ein mathematisches Verfahren die exakte Position des mit dem Transponder verbundenen Objektes im Raum berechnen.

Weitere Informationen:

Institut für Elektrische Informationstechnik,
Technische Universität Clausthal,
Leibnizstraße 28, 38678 Clausthal-Zellerfeld

Kooperationspartner:

Siemens AG, Dept. CT MS 1
Otto-Hahn-Ring 6, D-81730 München,
Dr.-Ing. Leif Wiebking
Tel. : 089 - 636-40069
Fax: 089 - 636-43702
E-Mail: leif.wiebking@siemens.com

Dr. sc. techn. Leonhard Reindl
Tel.: 05323 - 722582
Fax: 05323 - 723197
E-Mail: Reindl@iei.tu-clausthal.de

Jochen Brinkmann | idw
Weitere Informationen:
http://www.iei.tu-clausthal.de

Weitere Berichte zu: Positionserkennung Zentimeterbereich

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Boden – Grundlage des Lebens / Bodenforscher auf der Internationalen Grünen Woche
16.01.2018 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht EMAG auf der GrindTec 2018: Kleine Bauteile – große Präzision
11.01.2018 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie