Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virtueller Blutfluss

19.03.2014

Ein neues Computerverfahren kann realitätsnah simulieren, wie Medikamente in der Leber wirken

Was passiert, wenn ein Wirkstoff mit dem Blutstrom in die Leber kommt und mit dem Organ reagiert? Und was, wenn Teile der Leber geschädigt sind und das Medikament nicht richtig verstoffwechseln können?

Fragen wie diese lassen sich mit einer neuen Computersimulation detaillierter als zuvor beantworten. Fachleute des Fraunhofer-Instituts für Bildgestützte Medizin MEVIS in Bremen waren maßgeblich an der Entwicklung eines Programms beteiligt, das Blutströme und Stoffwechselprozesse in der Leber realitätsnah simuliert. Ihre Ergebnisse stellen die Experten jetzt im Fachmagazin „PLOS Computational Biology“ vor. 

Im Körper erfüllt die Leber mehrere Aufgaben: Sie reinigt das Blut von Schadstoffen, produziert lebenswichtige Eiweiße und speichert Vitamine. Beim Menschen fließen pro Stunde rund 90 Liter Blut durch das Organ. Um im Detail simulieren zu können, wie dieses Blut durch die Leber strömt und wie die in ihm enthaltenen Wirkstoffe reagieren, gehen die Forscher von einem hochaufgelösten 3D-Bild des Organs aus. Für die Veröffentlichung in „PLOS Computational Biology“ verwendeten die Experten das Bild einer Mäuseleber, aufgenommen mit einem Computertomographen.

Auf der Basis der Bilddaten rekonstruieren sie zunächst die präzise Struktur des fein verästelten Gefäßsystems. Dann wird die Leber in rund 50.000 virtuelle Würfelchen unterteilt – im Gegensatz zum bisherigen Vorgehen bei Simulationen in pharmakokinetischen Untersuchungen, in denen das Organ als eine einzige „Blackbox“ abgehandelt wird. „Zwar besteht eine Mäuseleber aus vielen Millionen Zellen“, erläutert MEVIS-Forscher Ole Schwen.

„Doch um die Rechenzeit in einem vertretbaren Rahmen zu halten, fassen wir in jedem der Würfelchen das Verhalten von mehreren tausend Zellen zusammen.“ Damit das Resultat realistisch gerät, greifen die Experten auf eine reichhaltige Datenbasis aus der biomedizinischen Forschung zurück, die das Stoffwechselverhalten von Leberzellen beschreibt.

Das Ergebnis der Simulation: Blutströme und Stoffwechselreaktionen lassen sich detailliert am Bildschirm verfolgen. Beispielsweise kann ein virtuelles Kontrastmittel gespritzt werden. Anschließend lässt sich am Monitor beobachten, wie schnell sich das Mittel in den verschiedenen Bereichen der Leber anreichert und wie anschließend seine Konzentration allmählich abklingt. Doch das Verfahren, das im Rahmen des „Virtual Liver Networks“ gemeinsam mit dem Lehrstuhl für Experimentelle Molekulare Bildgebung des Universitätsklinikums Aachen und Bayer Technology Services aus Leverkusen entwickelt wird, vermag noch mehr.

So lässt sich nachbilden, dass bestimmte Bereiche der Leber verfettet sind – mittlerweile eine Volkskrankheit. Startet jetzt die Simulation, lässt sich beobachten, dass die verfetteten Leberregionen das lipophile Kontrastmittel effektiver aufnehmen als das gesunde Gewebe. Auch die Stoffwechselreaktionen anderer Medikamente lassen sich simulieren – sowohl für gesunde Lebern als auch für Organe, die verfettet sind oder etwa durch eine Paracetamol-Überdosierung geschädigt wurden.

„Die bislang verwendeten Computermodelle betrachten die Leber nur als Ganzes“, sagt Projektleiter Tobias Preusser. „Unser Verfahren kann erstmals simulieren, was im Inneren des Organs tatsächlich passiert.“ Damit hat sie das Potenzial, zu einem nützlichen Forschungswerkzeug der Pharmaunternehmen zu werden. Wie etwa wirkt ein neues Medikament bei Patienten, deren Leber zum Teil verfettet oder anders geschädigt ist?

Fragen wie diese könnten sich künftig mit dem neuen Simulationsverfahren klären lassen. Manch ein Tierversuch könnte damit womöglich überflüssig werden. Denkbar ist auch, dass sich die Technik in fernerer Zukunft in der klinischen Praxis einsetzen lässt. Hier ließe sich zum Beispiel für jeden Patienten individuell abschätzen, ob ein bestimmtes Lebermedikament bei ihm anschlagen dürfte oder nicht.

Zuvor aber wollen die MEVIS-Experten ihre Software noch weiterentwickeln. Die aktuelle Veröffentlichung im Journal „PLOS Computational Biology“ basiert auf dem CT-Scan einer Mäuseleber. „Prinzipiell ist es kein Problem, die Simulation auch für eine menschliche Leber durchzuführen“, sagt Ole Schwen. „Außerdem vergleichen wir unsere Simulationen derzeit mit den Ergebnissen von Experimenten, um in Erfahrung zu bringen, ob das neue Verfahren auch quantitativ die richtigen Resultate bringt.“

Veröffentlichung
Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, et al. (2014) Spatio-Temporal Simulation of First Pass Drug Perfusion in the Liver. PLoS Comput Biol 10(3): e1003499.
http://dx.doi.org/10.1371/journal.pcbi.1003499

Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS
Eingebunden in ein weltweites Netzwerk aus klinischen und akademischen Partnern entwickelt Fraunhofer MEVIS praxistaugliche Softwaresysteme für die bildgestützte Früherkennung, Diagnose und Therapie. Im Mittelpunkt stehen Krebsleiden sowie Erkrankungen des Herz-Kreislaufsystems, des Gehirns, der Brust, der Leber und der Lunge. Das Ziel ist, Krankheiten früher und sicherer zu erkennen, Behandlungen individuell auf den Patienten zuzuschneiden und Therapieerfolge messbar zu machen. Außerdem entwickelt das Institut im Auftrag von Industriepartnern Softwaresysteme, mit denen sich bildbasierte Studien zur Wirksamkeit von Medikamenten und Kontrastmitteln auswerten lassen. Um seine Ziele zu erreichen, arbeitet Fraunhofer MEVIS eng mit Medizintechnik- und Pharmaunternehmen zusammen und verfolgt dabei die gesamte Innovationskette von der angewandten Forschung bis hin zum zertifizierten Medizinprodukt. http://www.mevis.fraunhofer.de

Das Netzwerk „Virtual Liver“
Im Netzwerk „Virtual Liver“ arbeiten 70 Arbeitsgruppen an 41 Kliniken und Forschungseinrichtungen daran, die Funktion der Leber besser zu verstehen. Ziel des interdisziplinären Projekts ist ein Computermodell, das die Leber sowie die in ihr ablaufenden Vorgänge realitätsgetreu nachbildet. Dabei werden erstmals alle relevanten Größenskalen zusammengeführt – von den Molekülen über die Zellen, das komplette Organ bis hin zum gesamten Körper. Das Modell wird durch Laborexperimente und klinische Daten validiert. Es soll fundierte Vorhersagen erlauben und damit als Basis für die Entwicklung neuer Therapie- und Diagnoseverfahren dienen. Das BMBF fördert das „Virtual Liver“-Netzwerk mit 43 Millionen Euro über einen Zeitraum von fünf Jahren, Projektstart war April 2010. Fraunhofer MEVIS erhält eine jährliche Förderung von 380.000 €.
http://www.virtual-liver.de

Weitere Informationen:

http://www.mevis.fraunhofer.de/aktuelles/pressemitteilung/article/virtueller-blu...

Bianka Hofmann | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie