Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschall versorgt aktive Implantate drahtlos mit Energie

04.10.2016

Aktive Implantate, wie zum Beispiel Electroceuticals, wirken im Gegensatz zu Medikamenten lokal, haben weniger Nebenwirkungen und funktionieren direkt wie der Körper selbst – durch elektrische Signale. Fraunhofer-Wissenschaftler stellen auf der Medica in Düsseldorf eine Technologieplattform vor, die aktive Implantate via Ultraschall drahtlos mit Energie versorgt (Halle 10, Stand G05). Im Visier der Experten: Volkskrankheiten wie Bluthochdruck, Diabetes oder Parkinson.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT in Sulzbach (Saarland) haben einen Demonstrator entwickelt, der aktive Implantate drahtlos via Ultraschall mit Energie versorgt. Die Technologie ist eine Alternative zur Energieversorgung mit Batterie und Induktion.


Prinzipieller Aufbau der ultraschallbasierten Energieversorgung und Kommunikation.

© Fraunhofer IBMT

Sie kommt platzsparend ohne integrierte Batterien aus und ist effizienter als eine induktive Energieübertragung: Ultraschallwellen dringen leichter durch das Metallgehäuse der Implantate als elektromagnetische Wellen – die Reichweite im Körper ist größer. Die Ultraschallwellen können auch Informationen bidirektional übertragen – zum Beispiel die Temperatur des Implantats oder Angaben zur Art und Stärke der elektrischen Stimulation.

Bluthochdruck, Diabetes oder Parkinson behandeln

Der als universal nutzbare Technologieplattform konzipierte Demonstrator kann für unterschiedlichste Anwendungen und Modellvarianten angepasst werden: Seine Stromversorgung funktioniert mit oder ohne Akku, er lässt sich für unterschiedlichste Anwendungen aktiver Implantate konfigurieren. Beispiele sind Volkskrankheiten wie Bluthochdruck, Diabetes oder Parkinson.

Die Forscher haben ein komplettes System entwickelt – den Sender außerhalb des Körpers und den Empfänger direkt im Implantat. Sie zeigen den Demonstrator – der die vorgegebenen Grenzwerte für Ultraschallbehandlungen am menschlichen Körper deutlich unterschreitet – auf der Messe Medica, dem Weltforum der Medizin, vom 14. bis 17. November 2016 in Düsseldorf (Halle 10, Stand G05).

»Auf der Messe suchen wir nach Industriepartnern, um auf Basis unserer Technologieplattform gemeinsam ein konkretes Produkt zu entwickeln. Technologisch könnte dies bereits innerhalb eines Jahres machbar sein«, vermutet Andreas Schneider, Leiter der Arbeitsgruppe »Aktive Implantate« am IBMT. Im Mai 2016 schätzte das Marktforschungsunternehmen BBC Research den Markt für mikroelektronische medizinische Implantate auf 24,6 Milliarden US-Dollar und prognostizierte ein Wachstum auf 37,6 Milliarden US-Dollar bis 2021 – bei einer durchschnittlichen jährlichen Wachstumsrate von 8,8 Prozent.

Ultraschallwellen sind mechanische Wellen. Sie werden von piezoelektrischem Material in Sender und Empfänger ausgelöst beziehungsweise aufgenommen. Die piezoelektrischen Wandler verformen sich unmerklich beim Anlegen einer Spannung. Die Verformung löst eine mechanische Welle aus, ähnlich den Schallwellen einer Lautsprecherbox. Diese treffen auf den piezoelektrischen Empfänger. Die Wellen verformen auch diesen, nur mit dem Unterschied, dass hier genau der umgekehrte Effekt entsteht: Die Verformung produziert elektrischen Strom.

Alternative zu Medikamenten

Aktive Implantate sind in der Lage, bestimmte Körperfunktionen eines erkrankten Menschen zu unterstützen und Funktionsstörungen zu kompensieren. Meist knapp unter der Haut eingepflanzt können sie durch elektrische Stimulationen den Herzrythmus kontrollieren (Herzschrittmacher), Sinneseindrücke unterstützen – zum Beispiel Retina- und Chochleaimplantat – sowie Prothesen steuern (Handprothese). Weitere komplexe Aufgaben der wenige Zentimeter großen Medizintechnik sind: Dosierung von Medikamenten oder Unterstützung des Knochenwachstums.

»Unser Körper funktioniert über elektrische Signale. Das stellt ein aktives Implantat nach«, erklärt Schneider. Peter-Karl Weber aus der Hauptabteilung »Ultraschall« des IBMT ergänzt: »Über Medikamente können zum Teil Verbesserungen erzielt werden. Der Nachteil: Sie wirken nur indirekt und belasten den gesamten Körper. Aktive Implantate wirken direkt und lokal dort, wo sie benötigt werden.« Ziel der Wissenschaftler ist es, dass in naher Zukunft auch Volkskrankheiten wie Bluthochdruck oder Diabetes auf diese Weise behandelt werden können.

»Dafür benötigen wir mehr leistungsstarke, miniaturisierte und gleichzeitig robuste Technologieansätze für aktive Implantate. Wir haben gezeigt, dass Ultraschall ein neuer Weg zur Energieversorgung von aktiven Implantaten ist«, sagt Weber.

Die prinzipielle Bauweise aktiver Implantate hat sich in den letzten Jahren kaum ver-
ändert. Genau wie die ersten kommerziellen Herzschrittmacher bestehen sie aus elektronischen Bauteilen, die hermetisch gekapselt in einem metallischen Titangehäuse verschweißt sind. Über elektrische Durchführungen im Titangehäuse und Kabelverbindungen erhalten die direkt im Herzmuskel sitzenden Elektroden ihre elektrischen Impulse. Grundsätzliches Problem: die Energieversorgung. Batterien haben den Nachteil, dass sie viel Platz benötigen – oft die Hälfte des Implantats – und regelmäßig operativ ausgetauscht werden müssen.

Als drahtlose Alternative hat sich die Induktion etabliert. Hier übertragen elektromagnetische Wellen Energie und Informationen. Zwei Spulen wandeln Strom in Magnetfelder und wieder zurück um. Der Nachteil: Die elektromagnetischen Wellen werden vom metallischen Implantatgehäuse abgeschirmt. »Ähnlich wie Blitze bei einem Faradayschen Käfig«, erklärt Schneider. Die Spulen müssen deshalb aus dem Gehäuse heraus gelegt werden. »Bei unserer Technologie liegt der Empfänger der Ultraschallwellen innerhalb des hermetischen Implantatgehäuses, direkt an der Gehäusewandung. Implantatwand und Empfänger bilden ein homogenes System, das es erlaubt, Ultraschallwellen zu empfangen und abzustrahlen«, schildert Schneider.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2016/oktober/ultraschall...

Britta Widmann | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie