Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumore präziser, schneller und schonender bestrahlen

08.01.2009
Technische Neuerungen erlauben es Strahlentherapeuten künftig, die hochpräzise Rotationstherapie auch an herkömmlichen Bestrahlungsgeräten durchzuführen.

Darauf weist die Deutsche Gesellschaft für Radioonkologie (DEGRO) anlässlich der Zulassung der neuen Technik in Deutschland hin. Bislang war diese Form der Bestrahlung nur an speziellen Geräten und wenigen deutschen Zentren möglich.

Bei der Rotationstherapie dreht sich der Strahlenkopf permanent um den Patienten: Die Strahlen erreichen den Tumor punktgenau. Damit lässt sich die Effektivität der Strahlentherapie weiter steigern und die Behandlungszeit zum Teil deutlich verringern.

Die Rotationstherapie ist eine Form der sogenannten intensitätsmodulierten Strahlentherapie (IMRT). Diese erlaubt bereits seit einigen Jahren eine sehr präzise Bestrahlung des Tumors aus verschiedenen Richtungen. Im Gegensatz zur IMRT bietet die Rotationstherapie eine kontinuierliche 360°-Bestrahlung. Diese permanente Bestrahlung aus jedem Einfallswinkel konnte bisher nur an speziellen Geräten durchgeführt werden. Das zugrundeliegende Verfahren wird als Tomotherapie bezeichnet.

Technische Neuerungen machen die Anwendung der Rotationstherapie künftig auch an herkömmlichen Bestrahlungsgeräten möglich: "Bislang stoppten diese Geräte nach der Bestrahlung eines Bereiches und fuhren dann in die nächste Bestrahlungsposition", erklärt Professor Dr. med. Volker Budach, Präsident der DEGRO und Chefarzt an der Klinik für Strahlentherapie der Berliner Charité. "Die neue Technik gewährleistet nun eine ununterbrochene Bestrahlung. Aus jedem Einfallswinkel erreichen die Strahlen gebündelt und zielgenau das erkrankte Gewebe." Durch die hohe Präzision bleibt umliegendes Gewebe verschont. So steigt mit der Strahlendosis nicht auch das Risiko, gesunde Zellen zu schädigen.

Die Neuentwicklungen erlauben nicht nur eine noch präzisere Bestrahlung, sondern verringern auch deutlich die Behandlungszeit. Während eine IMRT zwischen sieben und 15 Minuten dauert, nimmt eine Bestrahlung mit dem Rotationsverfahren nur etwa drei bis fünf Minuten in Anspruch. "Für unsere Patienten, die bei der Bestrahlung völlig still liegen müssen, ist das ein wesentlicher Fortschritt.

Auch angesichts der psychischen Belastung, die Krankheit und Therapie für den Betroffenen bedeuten, ist jede Behandlungsminute weniger ein großer Gewinn", berichtet Professor Dr. med. Frederik Wenz, Deutsche Gesellschaft für Radioonkologie und Direktor der Klinik für Strahlentherapie und Radioonkologie des Universitätsklinikums Mannheim. Die DEGRO empfiehlt Patienten, sich bei den strahlentherapeutischen Einrichtungen in ihrer Nähe zu informieren, ob das Verfahren für sie in Frage kommt.

Pressekontakt für Rückfragen:

Silke Stark
Deutsche Gesellschaft für Radioonkologie e.V.
Pressestelle
Postfach 30 11 20
70451 Stuttgart
Telefon: 0711 8931-572
Fax: 0711 8931-167
E-Mail: stark@medizinkommunikation.org

Silke Stark | idw
Weitere Informationen:
http://www.degro.org

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise