Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TOC im Feststoff -

01.02.2010
neuer Normentwurf DIN EN 15936 Einordnung der Suspensionsmethode - warum kompliziert, wenn es auch einfach geht
Produktmanagerin Summenparameter/Elementaranalyse, Analytik Jena AG.
Die Bestimmung des Parameters TOC in Abfällen, Sedimenten und Schlämmen ist in der DIN EN 13137 geregelt. Als Ersatz für diese Norm ist die DIN EN 15936 vorgesehen, die bislang in Deutschland nur als Entwurf prEN 15936:2009 vorliegt. Am grundsätzlichen Verfahren der TOC-Bestimmung in Feststoffen - der trockenen Verbrennung - hat sich gegenüber der bislang maßgeblichen Methode DIN EN 13137 nichts geändert.
Unterschiede zur gültigen Norm beschränken sich auf:
Die Änderung des Titels - jetzt: Schlamm, Boden, Abfall und behandelter Bioabfall - Bestimmung des gesamten organischen Kohlenstoffs (TOC) mittels trockener Verbrennung.Erweiterung des Anwendungsbereiches auf weitere Materialien.Redaktionelle Überarbeitung des Textes.Aufnahme von Verfahrenskenndaten für weitere Materialien.

Der Normentwurf deckt sich damit im normativen Teil weitestgehend mit der Vorgängermethode. In den informativen Teil des Normenentwurfs (Anhang C) wurde das sogenannte Suspensionsverfahren aufgenommen.

Was kann die Suspensionsmethode?
Die Suspensionsmethode erfordert eine besondere Probenvorbereitung der Feststoffproben: Zunächst müssen diese auf eine Korngröße von möglichst Die Suspensionsmethode sieht nach dem Versetzen der Probe mit Salzsäure einen weiteren Homogenisierungsschritt - diesmal mit Hilfe eines Dispergiergerätes - vor, um die Probe weiter zu zerkleinern und Sedimentation zu verhindern. Anschließend erfolgt das Umfüllen in kleinere Probengefäße, um schlussendlich die Probe quasi als "partikelhaltiges Abwasser" an einem handelsüblichen TOC-Flüssiganalysator auf TOC (NPOC) zu analysieren. Der Schritt des Umfüllens ist als "nicht unkritisch" zu bewerten - Proben, die zu schneller Sedimentation neigen oder "schwimmende" Partikel enthalten, können beim Abfüllen in mehrere kleine Probengefäße doch erhebliche Unterschiede in den einzelnen Gefäßen aufweisen - je nachdem, wie schnell und damit wie viele Partikel in die Vials überführt werden konnten. Weiterhin spielen Gefäßgeometrie und Rührfunktion des Probengebers eine große Rolle bei der Überführung eines repräsentativen Aliquots in den Verbrennungsteil des TOC-Analysators. Nicht zuletzt sollte der Analysator selbst eine sehr gute Partikelgängigkeit aufweisen, was in der Regel nur bei genügend großen Querschnitten des Probenzuführungssystems (Schläuche, Spritzen, Ventile u.ä.) und möglichst wenig "Hindernissen" (Ventilen u.ä.) im Probenweg gegeben ist. Unbedingte Voraussetzung für das Einbringen einer repräsentativen Probenmenge in den eigentlichen Reaktor ist die Freiheit des Systems von Komponenten, in welchen die Probe für längere Zeit verweilt und damit die Gefahr der Partikelsedimentation und damit unvollständigen Überführung in den Verbrennungsteil besteht.

Vor der eigentlichen Bestimmung des TOC aus der suspendierten Feststoffprobe muss der TOC-Analysator mit Flüssigstandards kalibriert werden. Hierzu werden in der Regel unterschiedlich konzentrierte Lösungen von Kaliumhydrogenphthalat in Wasser verwendet. Das Herstellen der klassischen Verdünnungsreihe und die eigentliche Kalibrierung über einen weiten Arbeitsbereich stellen wiederum einen erheblichen Zeitaufwand für den Anwender dar. Bei der direkten Verbrennung von Feststoffen in einem Feststoffanalysator wird die Kalibrierung direkt mit unterschiedlichen Einwaagen einer Festsubstanz realisiert - das geht schnell und ist sehr einfach.

Der Aufwand in der Probenvorbereitung für das Suspensionsverfahren ist relativ hoch - und das Ergebnis kritisch zu bewerten. Auch Mehrfachinjektionen aus einem Probengefäß - die bei einem gut partikelgängigen Gerät sicher recht gut reproduzierbar ausfallen können - sind kein Garant für die "Richtigkeit" des erzielten TOC-Wertes.

Eine Alternative gegenüber der direkten trockenen Verbrennung stellt die Suspensionsmethode sicher dann dar, wenn kein Feststoffgerät zur Verfügung steht und nur wenige Proben zu analysieren sind. Jeder TOC-Flüssiganalysator, der die Vorgaben der DIN EN 1484 erfüllt, kann dann zur Durchführung des Verfahrens eingesetzt werden. Ein analytischer Vorteil kann mit dem Suspensionsverfahren dann erzielt werden, wenn die Proben in ihrer Zusammensetzung sehr hohe Anteile an anorganischem Kohlenstoff gegenüber sehr kleinen Gehalten an organischem Kohlenstoff aufweisen - wie beispielsweise in Kalksteinproben. Als äußerst kritisch ist die Anwendung des Suspensionsverfahrens insbesondere bei heterogen zusammengesetzten Abfällen einzuschätzen.

Vorteile der direkten trockenen Verbrennung
Die Bestimmung des gesamten organischen Kohlenstoffs mittels trockener Verbrennung wird bevorzugt mit Geräten durchgeführt, die speziell für die Analyse von Feststoffen konzipiert sind. Diese Analysatoren gestatten die Zuführung größerer Probenmengen (teilweise bis zu 3 g) auf geeigneten Probenträgern und sind robust aufgebaut. Die Verbrennung der Proben erfolgt üblicherweise in einem korrosionsbeständigen Keramikverbrennungsrohr bei Temperaturen oberhalb von 1000 °C (bei bis zu maximal 1500 °C). Damit ist die Zersetzung bzw. Oxidation aller Kohlenstoffverbindungen im Sauerstoffstrom zu Kohlenstoffdioxid sichergestellt.

In einem Schritt zum Ergebnis...oder besser noch: gleich zwei Ergebnisse (TIC und TOC). · Schnell, einfach, präzise und richtig.· Zusätzliche Bestimmung des elementaren Kohlenstoffs (EC) möglich.

In einem Schritt zum Ergebnis
Die Probe wird in repräsentativer Menge in ein Keramikschiffchen eingewogen - fertig! Je nach Beschaffenheit des Materials und erwarteten Gehalten an TIC bzw. TOC kann die Menge mühelos adaptiert werden - übliche Einwaagen variieren zwischen 500 und 3000 mg.

Moderne Feststoffanalysatoren (wie beispielsweise der multi EA 4000 der Analytik Jena AG) können nun durch automatische Säurezugabe den anorganischen Anteil des Kohlenstoffs (TIC) direkt im Gerät bestimmen und dasselbe Probeschiffchen anschließend für die Bestimmung des nunmehr dort verbliebenen TOC der Verbrennung zuführen. Damit stehen zwei Ergebnisse in kurzer Zeit zur Verfügung!

Wer die Differenzmethode zur TOC-Bestimmung bevorzugt, kann auch dies mühelos automatisiert in nur einem Analysengang praktizieren. Hierzu werden einfach zwei Teilmengen derselben Probe in zwei Keramikschiffchen eingewogen und nacheinander analysiert. Das erste Schiffchen wird wiederum automatisch mit Säure versetzt und das entstehende CO2 direkt über das Detektionssystem als TIC-Signal erfasst. Anschließend wird das zweite Schiffchen direkt in die heiße Zone des Ofens überführt, um die Bestimmung des gesamten Kohlenstoffs (TC) durchzuführen. Abschließend wird das Ergebnis automatisch aus TC - TIC = TOC ermittelt (Bild 1).

Schnell, einfach, präzise und richtig
Bei inhomogenen Proben kann eine echte Mehrfachbestimmung mit unterschiedlichen Einwaagen dazu beitragen, das Ergebnis statistisch abzusichern. Das geht einfach und schnell. Die Präzision des erzielten Messwertes ist weniger von der Leistungsfähigkeit des Analysengerätes, vielmehr jedoch von der Homogenität des Probenmaterials abhängig. Typische Wiederholgenauigkeiten liegen für eher homogenere Materialien (Böden, Sedimente, Schlämme, Stäube, Aschen) in der Regel bei kleiner 3 % RSD. Bei inhomogeneren Proben aus dem Abfallbereich lassen sich durchaus relative Standardabweichungen von kleiner 5 % erzielen - das ist der Vorteil, der durch größere Probeneinwaagen zum Tragen kommt. Mit Hilfe von Referenzmaterialien kann die Richtigkeit problemlos überprüft werden.

In einer Beispielmessreihe wurde ein zertifizierter Bodenstandard bei sehr unterschiedlichen Einwaagen im Differenzmodus analysiert. Die Wiederfindung für den TOC variierte im Bereich von 96,8 bis 103,5 % und mit einer RSD von 2,3 %.

Zusätzliche Bestimmung des EC
Im Zusammenhang mit der seit April 2009 in Kraft getretenen Verordnung zur Vereinfachung des Deponierechts spielt die Bestimmung des elementaren Kohlenstoffs (EC) in Abfällen eine zunehmend bedeutendere Rolle. Laut geltender Verordnung ist eine Überschreitung der Zuordnungswerte für TOC mit Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitung beispielsweise durch elementaren Kohlenstoff verursacht wird. Das Interesse an der Bestimmung dieses Parameters steigt, ein genormtes Verfahren zu dessen Bestimmung liegt bislang nicht vor. Ein mögliches Verfahren zur Ermittlung des EC stellt die Pyrolysemethode dar. Diese Methode kann bei einigen Feststoffgeräten, die zur TOC-Bestimmung eingesetzt werden, angewendet werden (u.a. mit dem multi EA 4000). Die Pyrolysemethode lässt sich sehr gut automatisieren und bereitet keinen zusätzlichen Aufwand in der Probenvorbereitung.

Die Methode der trockenen Verbrennung kann also vielfältig für die Bestimmung mehrerer Parameter genutzt werden. Sie ist die Methode der Wahl für eine Vielzahl von Proben, lässt sich hervorragend automatisieren und weist eindeutige analytische Vorteile auf.

Birgit Wittenburg*) | LABO
Weitere Informationen:
http://www.labo.de/Fachbeitraege/TOC-Analysator-multi-EA-4000_id_3288__dId_479470__app_510-31571_.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften