Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Studie belegt die sichere und effektive Behandlung von Wirbelsäulentumoren mittels CyberKnife

22.01.2009
Patienten profitieren zudem von rascher Schmerzreduktion

Die weltweit größte Studie an Patienten, die ohne einen Metallmarker radiochirurgisch an der Wirbelsäule behandelt wurden, belegt die Effektivität und Sicherheit der CyberKnife-Technologie (SPINE, Volume 33, Number 26, pp2929-2934, 2008).

Zwischen 2005 und 2007 wurden 102 Patienten mit ein oder zwei spinalen Tumoren am Europäischen CyberKnife-Zentrum München-Großhadern in Kooperation mit dem Klinikum der Universität München (LMU) behandelt. Bei den insgesamt 134 Tumoren handelte es sich um sekundäre bösartige Geschwulste bei Patienten mit Brust-, Nieren-, Darm-, Prostata- und Lungenkrebs sowie Sarkomen (Tumore des Stützgewebes). Besonders auffällig war die rasche Schmerzreduktion bereits eine Woche nach der Bestrahlung des Krebsgewebes.

Durch die nur einmalige Bestrahlung, die ambulant und ohne Medikation auskommt, verringern sich die Kosten gegenüber einer klassischen Operation erheblich. Auch die Komplikationsraten sind im Vergleich dazu niedriger.

Sofern durch den Tumor die Stabilität der Wirbelsäule beeinträchtigt ist, empfehlen die Wissenschaftler eine radiochirurgische Behandlung vor stabilisierenden Eingriffen wie einer Kyphoplastie, bei der z.B. mit einem speziellen Biozement Wirbelbrüche behoben werden können.

Die spinale Strahlenchirurgie ist eine relativ neue Methode zur primären oder ergänzenden Behandlung von Tumoren an der Wirbelsäule. Ähnlich der neurochirurgischen Strahlenchirurgie des Gehirns ist dazu eine hohe Zielgenauigkeit nötig, da sich im Umfeld sehr strahlenempfindliche Strukturen, wie das Rückenmark, befinden. Die natürliche Bewegung des Zielgebietes im Wirbelsäulenbereich, beispielweise durch die Atmung, stellt eine besondere Herausforderung dar, weil der Patient auf dem Behandlungstisch bei einer CyberKnife Behandlung nicht fixiert wird. Durch die Atembewegung verändert sich während einer Bestrahlung die Position der zu bestrahlenden Geschwulst. Um diese räumlichen Veränderungen auszugleichen, benötigten die Systeme bisher invasive Markierungen. Dazu mussten in einem kleinen chirurgischen Eingriff Metallplättchen an der Wirbelsäule angebracht werden, die dann mit den bildgebenden Verfahren während der Bestrahlung eine Lageortung des zu bestrahlenden Gewebes ermöglichten.

Jetzt entfällt bei der CyberKnife Technologie die Notwendigkeit von Metallmarkern. Stattdessen werden knöcherne Strukturen genutzt, um eine dynamische Positionsbestimmung vorzunehmen (Xsight Spine Tracking System). Das System kann die Strahleneinheit jeweils auf das Zielgebiet adjustieren, indem es die Bewegungen von knöchernen Strukturen der Wirbelsäule misst und daraus in Echtzeit die Ortsberechnung des Tumors vornimmt. Damit wird die Behandlung schonender für den Patienten und zugleich sicherer, weil den Betroffenen ein chirurgischer Eingriff zur Implantation der Marker erspart bleibt und Schmerzen sowie eventuell dadurch auftretende Komplikationen vermieden werden können (Journal of Neurosurgery Spine: Vol. 5, October 2006)

Wirkung der Strahlen in der Tumorzelle

Die wichtigste Aufgabe der Strahlenchirurgie ist die homogene Bestrahlung eines festgelegten Zielvolumens. Dabei sollen die gesunden Körperteile in der Tumorumgebung so wenig wie möglich von Strahlen getroffen werden. Um dies zu erreichen, wird zuerst ein Bestrahlungsgerät mit geeigneter Strahlenart und Energie gewählt und die Tumorregion aus verschiedenen Richtungen bestrahlt. Bei der CyberKnife Technologie rotiert die Bestrahlungseinheit um den Patienten - typisch sind bis zu 150 (aus 1200 möglichen) Einstrahlrichtungen pro Behandlung.

Durch die ionisierende, hochenergetische Photonen-Strahlung, die in einem Beschleuniger erzeugt werden, werden in den Tumorzellen Schäden am Erbgut (DNA) verursacht, die letztlich zum Zelltod führen. Die CyberKnife Technologie steuert dabei die Bestrahlung so, dass die für die Krebszellen tödliche Dosis nur im Zielgebiet (Tumor) erreicht wird, das umliegende, gesunde Gewebe jedoch verschont bleibt bzw. durch die Photonen nicht nachhaltig geschädigt wird. Meist reicht eine einzige ambulante Behandlung mit einer mittleren Dauer von 60 Minuten aus. Die Bestrahlung ist schmerzfrei, eine Narkose nicht nötig.

Europäisches CyberKnife Zentrum München-Großhadern

Das erste CyberKnife Zentrum in Deutschland wurde am 1. Juli 2005 in Kooperation mit dem Klinikum der Universität München (LMU) eröffnet. Mit Hilfe einer bildgeführten Robotersteuerung kann hochpräzise eine Tumor zerstörende Strahlendosis auf ein genau definiertes Zielvolumen gerichtet werden, wobei die umliegenden, gesunden Strukturen geschont werden. Bei der Behandlung überschneiden sich schwache Strahlenbündel aus vielen verschiedenen Richtungen im Tumor, wo sie sich zur Gesamtdosis aufsummieren. Durch die Entwicklung der CyberKnife Technologie mit einer Kombination aus integrierter Bildführung und Robotersteuerung zeichnet sich eine völlig neue, nicht-invasive Behandlungsmöglichkeit ab.

Ansprechpartner:
PD Dr. Alexander Muacevic, PD Dr. Berndt Wowra
Europäisches CyberKnife Zentrum München Großhadern
Max-Lebsche-Platz 31
813777 München
Tel: +49 (0)89 4523360
Fax: +49 (0)89 45233616
E-Mail: info@cyber-knife.net

Philipp Kressirer | Klinikum der Universität München
Weitere Informationen:
http://www.cyber-knife.net

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops