Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strahlenmesser schaltet Tumoren aus

23.08.2011
Das Europäische Cyberknife Zentrum in München-Großhadern (ECZM) war das erste dieser Art in Deutschland. Das Team hat darüber hinaus auch im internationalen Vergleich eine umfangreiche methodische und medizinische Expertise.

Seit 2005 sind hier über 3.000 Patienten mit der schmerzfreien strahlenchirurgischen Methode behandelt worden. Durch die Kooperation mit führenden bundesdeutschen Universitäten, wie der Ludwig-Maximilians-Universität München (LMU) und der Berliner Charité, erweitern die Experten des ECZM das Anwendungsspektrum und die Qualität der Behandlung. Die ärztlichen Leiter sind Prof. Dr. med. Berndt Wowra und Privat-Dozent Dr. med. Alexander Muacevic.

Welche Patienten behandeln Sie im Europäischen Cyberknife Zentrum in München?

Dr. Muacevic: Das Behandlungsspektrum reicht vom Akustikusneurinom über Tumoren im Schädel-Hirn-Bereich über die Bestrahlung von Krebsgeschwulsten im Auge, an der Wirbelsäule und an Lunge, Leber und Prostata. Dabei sind zwei Dinge zu beachten: die Tumoren dürfen nicht zu groß sein und nur in geringer Anzahl im Körper verstreut liegen. Andernfalls macht eine strahlenchirurgische Therapie allein keinen Sinn, sondern muss beispielsweise kombiniert werden mit einer operativen Entfernung von Krebszellen oder einer Chemotherapie. Um die bestmögliche Therapie für den Patienten festzulegen, stehen wir mit den Experten am Uniklinikum in engem Kontakt.

Prof. Wowra: Gerade durch die intensive Kooperation mit dem Universitätsklinikum der LMU konnten wir in vielen klinischen Studien die Methode wissenschaftlich untersuchen und folglich unseren Patienten neue Behandlungsoptionen anbieten. Die jüngste Studie galt der Anwendung von Cyberknife gegen Knochenmetastasen bei Prostatakrebs, ein relativ häufig auftretendes Problem. Es zeigte sich, dass Cyberknife eine effektive Möglichkeit sein kann. Ein anderes Beispiel ist das Aderhautmelanom, eine Augenerkrankung. Hier waren wir die Ersten, die den Behandlungserfolg mit Cyberknife belegen und somit eine Alternative für die radioaktive Bestrahlung oder gar die Entfernung des Auges entwickeln konnten.

Dr. Muacevic: Künftig werden wir auch mit den Strahlenonkologen an der Berliner Charité, die nun ebenfalls ein Cyberknife-Gerät in Betrieb genommen haben, enger zusammenarbeiten, was gleichfalls zu Verbesserungen in der Methodik und im Behandlungsspektrum führen dürfte.

Werden bei Ihnen nur Privatpatienten behandelt oder auch gesetzlich Versicherte?

Dr. Muacevic: Die AOK Bayern, viele Betriebskrankenkassen, die Deutsche BKK, die LKK und weitere Krankenkassen übernehmen die Behandlungskosten für die Cyberknife-Behandlung. Bei anderen Kassen sind zum Teil Einzelfallbewertungen nötig. Insofern besteht für jeden Patienten die Möglichkeit, sich bei uns behandeln zu lassen. Das gilt natürlich auch für Patienten aus dem Ausland.

Wie lange dauert eine Behandlung mit Cyberknife?

Prof. Wowra: Die Cyberknife-Behandlung ist in der Regel einmalig. Die Bestrahlung dauert je nach Indikation zwischen 45 und 60, manchmal 90 Minuten. Danach kann der Patient seinem gewohnten Tagesablauf nachgehen, da er weder eine Wunde noch Schmerzen von der Behandlung hat. Die Therapie erfolgt ja zudem ohne Narkose, dafür kann man bei der Bestrahlung seine Lieblingsmusik hören. Allerdings benötigen wir einen gewissen Vorlauf für die Behandlungsplanung. Es müssen Bilder mit dem Computertomographen, dem CT, und gegebenenfalls auch mit dem Kernspintomographen von der zu behandelnden Körperregion gemacht werden. Anhand der Aufnahmen und des Befunds wird dann in einem Team, zu dem neben Ärzten auch Physiker und ein Strahlenmediziner gehören, festgelegt, wie lange, mit welcher Dosis und aus welchen Richtungen die Tumoren bestrahlt werden.

Worauf basiert die Wirkung des Cyberknife?

Dr. Muacevic: Umgangssprachlich kann man von einem ,Strahlenmesser' sprechen. Die Photonen, die in einem Linearbeschleuniger erzeugt werden, durchdringen das Gewebe und entfalten ihre Wirkung im Brennpunkt, dort wo die Krebszellen sitzen. Diese hoch energetische Strahlung zerstört das Erbgut der Tumorzellen, die daraufhin zugrunde gehen und vom Körper abgebaut werden. Das allerdings dauert einige Zeit, weshalb erst nach rund sechs Wochen erste Ergebnisse auf CT-Bildern zu sehen sind. Durch die Einstrahlung aus verschiedenen Richtungen wird umliegendes, gesundes Gewebe geschont und in der Krebsgeschwulst, also dort wo alle Strahlen zusammentreffen, eine Schädigung des Erbguts verursacht.

Wie wichtig ist der Austausch mit anderen Zentren oder großen Forschungseinrichtungen?

Prof. Wowra: Aus unserer Sicht unerlässlich. Fortschritte in der Medizin generell und insbesondere in einem so komplexen Gebiet wie der Onkologie können nur in interdisziplinärer Zusammenarbeit erzielt werden. Die Kooperation mit forschungsstarken Einrichtungen wie dem Klinikum der LMU oder der Berliner Charité gehören daher unbedingt dazu, um dem Patienten ein wissenschaftlich fundiertes und medizinisch sinnvolles Angebot machen zu können.

Dr. Muacevic: Hinzu kommt die Mitarbeit in internationalen Gremien. Wir tauschen uns mit Experten in aller Welt aus, sind auf Kongressen vertreten und haben selbst Funktionen in Fach-Organisationen. Davon profitieren die Patienten, die zu uns kommen, weil wir sie individuell beraten können. Das hat sich herumgesprochen und so haben wir mittlerweile Patienten aus Australien, den USA, aus Russland oder den arabischen Staaten.

Ansprechpartner:
PD Dr. Alexander Muacevic, Prof. Dr. Berndt Wowra
Europäisches Cyberknife Zentrum München-Großhadern
Max-Lebsche-Platz 31
81377 München
Tel: +49 (0)89 4523360
Fax: +49 (0)89 45233616
E-Mail: info@cyber-knife.net
Über das Europäische Cyberknife Zentrum München-Großhadern
Dieses erste Cyberknife Zentrum in Deutschland wurde am 1. Juli 2005 in Kooperation mit dem Klinikum der Universität München (LMU) eröffnet. Mit Hilfe einer bildgeführten Robotersteuerung kann hochpräzise eine Tumor zerstörende Strahlendosis auf ein genau definiertes Zielvolumen gerichtet werden, wobei die umliegenden, gesunden Strukturen geschont werden. Bei der Behandlung überschneiden sich schwache Strahlenbündel aus vielen verschiedenen Richtungen im Tumor, wo sie sich zur Gesamtdosis aufsummieren. Durch die Entwicklung der Cyberknife Technologie mit einer Kombination aus integrierter Bildführung und Robotersteuerung ist eine völlig neue, nicht-invasive Behandlungsmöglichkeit entstanden. Mittlerweile sind in München über 3.000 Patienten mit dieser schmerzfreien, ambulanten und in der Regel einmal anzuwendenden Methode behandelt worden. Im Bereich der Behandlungen von Patienten mit Erkrankungen des Gehirns liegen die Münchner Radiochirurgen weltweit an erster Stelle. Über alle Erkrankungsbereiche hinweg nehmen sie Rang 3 ein, bei insgesamt weltweit über 200 Cyberknife-Zentren.

Philipp Kressirer | Med. Universität München
Weitere Informationen:
http://www.cyber-knife.net

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neuer Ansatz zur Behandlung von Mitralklappen-Erkrankungen: Erste Patientendaten
22.08.2017 | Universitätsspital Bern

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie