Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Smarte Mikrochips könnten menschliche Sehkraft optimieren

11.05.2015

INNOVATION INS AUGE GEFASST: Neue Ansätze zum Sehen mit Mikrochips bieten Chancen für Blinde

Chip-basierte Retina-Implantate erlauben bisher nur eine rudimentäre Wiederherstellung der visuellen Wahrnehmung. Anpassungen ihrer elektrischen Impulse könnten das aber ändern. Diesen Schluss lassen erste veröffentlichte Ergebnisse eines Projekts des Wissenschaftsfonds FWF zu. Diese zeigen, dass zwei spezielle Sehzell-Typen unterschiedlich auf bestimmte elektrische Signale reagieren – ein Effekt, der das Sehen von Hell-Dunkel-Kontrasten verbessern könnte.


Mikrochips ins Auge implantieren ist heute Realität. Ihre (Seh-)Leistung zu optimieren, ist Thema eines aktuellen FWF-Projekts.

© Shawn Kelly / Boston Retinal Implant Project

"Blinde richtig sehend machen – das wird noch dauern", sagt Frank Rattay vom Institut für Analysis und Scientific Computing an der Technischen Universität Wien. "Doch bei bestimmten Erkrankungen des Auges gelingt es schon, ihnen mit Retina-Implantaten ein noch stark eingeschränktes Sehen zurückzugeben."

IMPULSGEBER

Dazu werden mittels – im Auge implantierten – Mikrochips Lichtsignale in elektrische Impulse umgewandelt, die anschließend Zellen der Netzhaut stimulieren. Ein großes Problem dabei: Zelltypen, die in einem funktionsfähigen Auge unterschiedlich auf Lichtreize reagieren werden gleichmäßig stimuliert. Damit wird die Wahrnehmung von Kontrast stark vermindert.

"Doch könnte es gelingen", so Rattay, "durch spezielle elektrische Impulse die eine Zellart mehr als die andere zu stimulieren und so die Wahrnehmung von Kontrast zu steigern." Erste Ansätze dazu fand er mit seinem Team im Rahmen eines FWF-Projekts. Mit den Partnern Shelley Fried von der Harvard Medical School und Eberhard Zrenner von der Universitätsklinik Tübingen werden die simulierten Ergebnisse durch experimentelle Befunde unterstützt.

SIMULIERT & STIMULIERT

Tatsächlich konnten Rattay und sein Team in einer ausgeklügelten Computersimulation zweier Zelltypen des Auges Spannendes entdecken. So zeigte sich, dass bei Auswahl spezieller elektrischer Impulse tatsächlich unterschiedliche biophysikalische Vorgänge in den beiden Zelltypen aktiviert werden konnten. Eine sogenannte monophasische Stimulation – bei der die elektrische Polarität des Signals vom Retina-Implantat nicht wechselte – führte bei einem Zelltyp zu einer deutlichen Depolarisierung.

Dazu Rattay: "Depolarisierung bedeutet, dass die in Zellen vorherrschende negative Ladung kurzfristig in eine positive übergeht. So werden Nervenimpulse weitergeleitet." In dem anderen Zelltyp war diese Ladungsumkehr deutlich schwächer. Weiters konnte das Team anhand der Simulation auch zeigen, dass die Konzentration an Kalzium in den beiden Zelltypen bis zu vierfach unterschiedlich auf ein monophasisches Signal reagierte.

ON AND OFF

"Kalzium ist in vielen Zellen ein wichtiges Signalmolekül, das bei der Verarbeitung von Information eine wesentliche Rolle spielt. Deswegen haben wir dieses in unserer Simulation auch besonders berücksichtigt und die Wirkung spezieller Membranproteine für den Kalziumtransport miteinberechnet", erklärt Paul Werginz, Kollege von Rattay und Erstautor der nun veröffentlichten Arbeit. Konkret schaute sich das Team Modelle zweier Zelltypen der Retina an, die als ON- und OFF-Zellen bezeichnet werden.

ON-Zellen reagieren stärker, wenn es im Zentrum ihrer Platzierung heller ist – bei OFF-Zellen ist es genau umgekehrt. Dank ihrer Anordnung in der Retina wird so die Wahrnehmung von Kontrasten stark erhöht. Doch Retina-Implantate senden statt Lichtimpulse bisher elektrische Impulse, die in beiden Zelltypen zu den gleichen biochemischen Reaktionen führen und so die Kontrastempfindlichkeit stark reduzieren. Die Arbeit von Rattay zeigt nun, dass das nicht sein muss.

FORM MIT EINFLUSS

Ein zusätzliches Ergebnis, das die Gruppe um Rattay fand, war, dass die Form der einzelnen ON- oder OFF-Zelle Einfluss auf die Signalverarbeitung hat. So spielt die unterschiedliche Länge beider Zelltypen eine wesentliche Rolle. Auch dies, erklärt Rattay, könnte eine wichtige Erkenntnis sein, die es erlaubt, die Performance zukünftiger Retina-Implantate durch die Modulation ihrer elektrischen Signale deutlich zu verbessern. Dieses Ziel verfolgen Rattay und sein Team intensiv, um Strategien zu entwickeln, die vielen Blinden das visuelle Erkennen von Gegenständen ermöglichen sollen.


Zur Person
Frank Rattay ist Professor am Institut für Analysis und Scientific Computing der Technischen Universität Wien und leitet dort die Gruppe für Computational Neuroscience and Biomedical Engineering. Seit Jahrzehnten publiziert er international erfolgreich im Bereich der Erzeugung und Optimierung künstlicher Nervensignale.

Link
Originalpublikation: Modeling the response of ON and OFF retinal bipolar cells during electric stimulation. Vision Research Dec. 2014. P. Werginz, H. Benav, E. Zrenner, F. Rattay. DOI: dx.doi.org/10.1016/j.visres.2014.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25499837

Video zur Stimulation von Nervenzellen in der Retina: https://www.youtube.com/watch?v=wQyURbqOTYg

Bild und Text ab Montag, 11. Mai 2015, ab 10.00 Uhr MESZ verfügbar unter:
http://www.fwf.ac.at/de/wissenschaft-konkret/projektvorstellungen/2015/pv2015-kw20


Wissenschaftlicher Kontakt:
Ao.Univ.-Prof. i.R. Dipl.-Ing. Dr.rer.nat. Dr.techn. Dr.scient.med. Frank Rattay Technische Universität Wien Institut für Analysis und Scientific Computing Wiedner Hauptstr. 8–10
1040 Wien
T +43 / 1 / 58 801 - 10114
E frank.rattay@tuwien.ac.at
W https://www.tuwien.ac.at

Der Wissenschaftsfonds FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Redaktion & Aussendung:
PR&D – Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D - Public Relations für Forschung & Bildung

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

nachricht Neue Studienergebnisse zur Tiefenhyperthermie-Behandlung
15.02.2018 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics