Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siemens entwickelt neuartige Methode zur iterativen Rekonstruktion von CT-Bildern

27.11.2009
Exzellente Bildqualität bei niedrigstmöglicher Strahlenbelastung für den Patienten ist eine wesentliche Forderung an die Computertomographie (CT). Reduziert man einfach die Dosisapplikation, führt das allerdings in der Regel zu erhöhtem Bildrauschen und damit zu Verlust an Bildqualität. Um bei geringerer Dosis dennoch Aufnahmen hoher Qualität zu erzeugen, hat Siemens Healthcare „Iterative Reconstruction in Image Space (IRIS)“ entwickelt.

Ein CT macht eine Vielzahl von Röntgenaufnahmen aus verschiedenen Richtungen und errechnet daraus die klinischen Bilder, die der Arzt analysiert. Der neuartige Algorithmus IRIS für die Rekonstruktion der Schnittbilder aus den CT-Rohdaten nutzt die in den Ursprungsdaten steckende Information besser aus und läuft trotz zusätzlicher Rekonstruktionsschritte wesentlich schneller ab als bisherige Ansätze für das iterative Verfahren.

Wenn man IRIS mit der derzeitigen Standardmethode zur Bildrekonstruktion, der Filtered Back Projection (FBP), vergleicht, hat der Anwender des Siemens-Verfahrens zwei Optionen: Er kann dieselbe Bildqualität wie mit FBP erzeugen und dabei die Dosis um bis zu 60 Prozent reduzieren oder die Dosis beibehalten und dafür eine deutlich bessere Bildqualität als mit FBP erzeugen. IRIS wird derzeit bereits an mehreren Universitätskliniken getestet. Ab dem zweiten Quartal 2010 werden die meisten Systeme der Somatom-Definition-Familie mit dem neuen Verfahren ausgestattet sein.

Bei modernen Spiral-CT-Geräten wird der Patient in einer vorgegebenen Geschwindigkeit durch die Gantry (Ringtunnel) gefahren, während die Röntgenstrahler-Detektor-Kombination kontinuierlich um seinen Körper rotiert. Aus der Abschwächung der Strahlung beim Durchlaufen des Körpers werden mittels mathematischer Verfahren die Abschwächungskoeffizienten in der Querschnittsebene sowie die räumliche Verteilung der Dichte errechnet. Aus diesen Messwerten, den Rohdaten, werden die klinischen Bilder für verschiedene Ebenen im Raum, wie axial, frontal, sagittal et cetera, rekonstruiert. Als Standard-Rekonstruktionsmethode wird derzeit Filtered Back Projection (FBP) verwendet, ein Algorithmus, mit dem durch Filterung und anschliessende Rückprojektion in die Bildebene die gewonnenen Rohdaten in Bilddaten umgesetzt werden. Dabei muss ein Kompromiss eingegangen werden zwischen räumlicher Bildauflösung, also Bildqualität, und Bildrauschen. Soll das Bildrauschen gesenkt werden, um ein bessere Bildqualität zu erhalten, muss die Dosis erhöht werden.

Schon in den 1970er Jahren wurde die iterative Rekonstruktion als vielversprechende Methode beschrieben, klinische Bilder mit geringem Rauschanteil zu erzeugen. Bei diesem Verfahren lässt man für den Bilderzeugungsprozess eine „Korrekturschleife“ einfliessen, in der die Schnittbilder schrittweise durch eine allmähliche Annäherung an die tatsächliche Dichteverteilung errechnet werden. Dazu wird zunächst eine Annahme über die Dichteverteilung der zu untersuchenden Gewebeschichten getroffen und ein Ausgangsbild berechnet. Aus diesem Ausgangsbild werden neue, synthetische Projektionsdaten erzeugt und mit den tatsächlich aufgenommenen “echten“ Messrohdaten verglichen. Stimmen sie nicht überein, wird ein entsprechendes Korrekturbild berechnet, mit dessen Hilfe das Ausgangsbild korrigiert wird. Dann werden erneut Projektionsdaten synthetisiert und mit den gemessenen Rohdaten verglichen. Diese Iteration wird so lange fortgesetzt, bis ein definiertes Abbruchkriterium erfüllt ist. Danach ist im korrigierten Bild die räumliche Bildauflösung in kontrastreichen Regionen erhöht, das Bildrauschen in gering kontrastierten Arealen ist dagegen reduziert. Das Bild wird in dichte-homogenen Geweberegionen weicher, während kontrastreiche Gewebegrenzen erhalten bleiben. Bildauflösung und Bildrauschen sind entkoppelt. Diese Methode bringt allerdings ein Problem mit sich: Bei der Berechnung der synthetischen Projektionsdaten muss das Mess-System des CT-Gerätes mathematisch genau nachgebildet werden, was sehr rechenaufwändig ist. Zudem ist eine grosse Zahl von Iterationen erforderlich. Damit nehmen die Rechenzeit für die Rekonstruktion und die Anforderungen an die Computerkapazitäten derartig zu, dass das Verfahren in der klinischen Praxis nicht anwendbar ist.

Eine Lösung schien bisher die „Statistische iterative Rekonstruktion“ zu sein. Um die langen Rechenzeiten zu vermeiden, wird dabei auf die genaue mathematische Modellierung des Mess-Systems verzichtet und die Anzahl der Iterationsläufe stark reduziert. Auf Basis eines einfachen statistischen Korrekturmodells, das nur die Rauscheigenschaften der Messdaten berücksichtigt, wird ein grosser Anteil des Rauschens entfernt. Diese aggressive Methode beschleunigt zwar eine rauschfreiere Rekonstruktion des Bildes enorm, erzeugt aber Schnittbilder, die in ihrem Bildeindruck derartig von den Ergebnissen der Standards FBP abweichen können, dass die Radiologen möglicherweise irritiert werden.

Der Rekonstruktionsalgorithmus Iterative Reconstruction in Image Space (IRIS) von Siemens Healthcare verfolgt im Vergleich zur „Statistischen iterativen Rekonstruktion“ einen anderen Ansatz zur Beschleunigung der Bildrekonstruktion. Es werden Schnittbilddaten errechnet, ohne sie immer wiederkehrend mit den Rohdaten vergleichen zu müssen. Kern des innovativen Ansatzes ist, dass beim ersten Rekonstruktionslauf jegliche Bildinformation vom nur langsam zu verarbeitenden Rohdatenbereich in den weniger aufwändig zu berechnenden Bilddatenbereich überführt wird. Das dabei entstehende „Masterbild“ enthält jedoch erhebliches Bildrauschen, das in den folgenden iterativen Schritten im Bilddatenbereich aus dem Masterbild entfernt wird. Das Bild wird auf diese Weise in kleinen aufeinanderfolgenden Schritten sukzessive von Bildrauschen und Artefakten befreit, ohne die Bildschärfe zu beeinträchtigen. So werden auch zeitaufwändige Rückprojektionen vermieden. Durch diesen neuartigen Ansatz können die Siemens-Experten mit relativ geringem Rechenaufwand und auf einfache Weise aus den Rohdaten eines CT-Scans eine äusserst genaue Abbildung der tatsächlichen Eigenschaften des endgültigen Bildes rekonstruieren. Mit IRIS ist mit einer bis zu 60 Prozent reduzierten Dosis dasselbe Signal-Rauschverhältnis zu erreichen wie mit Filtered Back Projection (FBP) bei voller Dosis.

Mit dem neuen Algorithmus lässt sich also die Dosis ohne Qualitätseinbusse deutlich reduzieren. Alternativ kann die Iterative Rekonstruktion von Siemens bei gleichbleibender Dosis die Bildqualität des rekonstruierten Bildes deutlich erhöhen. Das bestätigt auch U. Joseph Schoepf, MD, Professor of Radiology and Cardiology, Director of CT Research and Development, Medical University of South Carolina, USA: “Mit dem Verfahren Iterative Reconstruction in Image Space bin ich in der Lage, bis zu 60 Prozent Dosis bei einer ganzen Reihe von Routine-Anwendungen zu sparen und gleichzeitig die gewohnte ausgezeichnete Bildqualität beizubehalten.“

„Bei Siemens Healthcare haben Strahlenschutz und Dosisreduktion in der CT höchste Priorität, und zwar schon seit das Unternehmen 1974 den ersten Computertomographen (CT) auf den Markt brachte. Wir haben bereits eine ganze Reihe technischer Innovationen an unseren CTs eingeführt, die zur Dosisreduktion beitragen“, sagte Dr. Sami Atiya, CEO Computertomographie von Siemens Healthcare. „Mit IRIS können wir bei den meisten CT-Untersuchungen die Strahlenexposition deutlich senken.“

Bei IRIS von Siemens werden Schnittbilddaten errechnet, ohne sie immer wiederkehrend mit den Rohdaten vergleichen zu müssen. Kern des innovativen Ansatzes ist, dass beim ersten Rekonstruktionslauf jegliche Bildinformation vom nur langsam zu verarbeitenden Rohdatenbereich in den weniger aufwändig zu berechnenden Bilddatenbereich überführt wird. Das dabei entstehende „Masterbild“ enthält jedoch erhebliches Bildrauschen, das in den folgenden iterativen Schritten im Bilddatenbereich aus dem Masterbild entfernt wird. Das Bild wird auf diese Weise in kleinen aufeinanderfolgenden Schritten sukzessive von Bildrauschen und Artefakten befreit, ohne die Bildschärfe zu beeinträchtigen. So werden auch zeitaufwändige Rückprojektionen vermieden. Durch diesen neuartigen Ansatz können die Siemens-Experten mit relativ geringem Rechenaufwand und auf einfache Weise aus den Rohdaten eines CT-Scans eine äusserst genaue Abbildung der tatsächlichen Eigenschaften des endgültigen Bildes rekonstruieren. Mit IRIS ist mit einer bis zu 60 Prozent reduzierten Dosis dasselbe Signal-Rauschverhältnis zu erreichen wie mit Filtered Back Projection (FBP) bei voller Dosis.

Leseranfragen sind zu richten an:
Siemens Schweiz AG
Healthcare Sector
Freilagerstrasse 40
CH-8047 Zürich
Tel: +41 (0)585 581 599

| Siemens Healthcare
Weitere Informationen:
http://www.siemens.ch

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mehr Patientensicherheit: Neue Testmethoden für die Eignung von Implantaten für MRT-Untersuchungen
11.10.2017 | Ostbayerische Technische Hochschule Amberg-Weiden

nachricht DZHK-Studien: Strahlenfreie und nicht-invasive Diagnose der diastolischen Herzschwäche
10.10.2017 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz