Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen mit den grauen Zellen

29.04.2010
Neue Mikroskopie-Methode macht Nervenschaltungen im Gehirn sichtbar

Wenn sich ein Gegenstand vor unserem Auge bewegt, feuern bestimmte Nervenzellen in unserem Hinterkopf elektrische Signale – je nach Bewegungsrichtung sind andere Zellen aktiv. Wissenschaftler der Technischen Universität München (TUM) können jetzt im Gehirn beobachten, wie einzelne dieser Nervenzellen solche Bewegungssignale empfangen und verarbeiten: Erstmals kann eine neue Mikroskopie-Methode einzelne, ein Tausendstel Millimeter kleine Nervenverschaltungen (Synapsen) darstellen. In Zukunft könnte die Methode verstehen helfen, wie Lernen auf der Ebene einer Nervenzelle funktioniert. Die Forschungsergebnisse wurden jetzt in der Zeitschrift Nature veröffentlicht.

Licht, das auf die Netzhaut des menschlichen Auges fällt, trifft dort auf 126 Millionen Sinneszellen, die es in elektrische Signale umwandeln. Bereits die kleinste Einheit des Lichts, ein Photon, kann eine der Sinneszellen stimulieren. Die Folge: Ungeheure Datenmengen müssen verarbeitet werden, damit wir sehen können. Die Datenverarbeitung beginnt bereits in der Netzhaut, aber das fertige Bild entsteht erst im Gehirn, genauer: in der Sehrinde im hinteren Teil des Großhirns.

Die Wissenschaftler um den TUM-Neurophysiologen Prof. Arthur Konnerth interessieren sich für eine bestimmte Sorte von Nervenzellen in der Sehrinde, die auf Bewegungen reagiert. Ob vor dem Auge ein Balken von unten nach oben wandert oder von rechts nach links: Stets reagieren andere Nervenzellen der Sehrinde. Wie die gesendeten Impulse dieser "Richtungs"-Neuronen aussehen, ist gut bekannt - doch wie sieht das Eingangssignal aus? Das ist nicht leicht zu beantworten, denn jede der Nervenzellen besitzt einen ganzen Baum winziger, verästelter Antennen, an die hunderte anderer Nervenzellen mit ihren Synapsen andocken.

Um mehr über das Eingangssignal herauszufinden, schauten Konnerth und seine Mitarbeiter einer Maus beim Sehen zu. Dazu verfeinerten sie eine Mikroskopie-Methode, mit der sich bis zu einem halben Millimeter in das Hirngewebe hineinblicken und eine einzelne Zelle beobachten lässt, die sogenannte 2-Photonen-Fluoreszenz-Mikroskopie. Gleichzeitig leiteten sie mit haarfeinen Pipetten elektrische Signale an einzelnen Baum-Fortsätzen derselben Nervenzelle ab (Patch-Clamp-Technik). Konnerth: "Ähnliche Versuche wurden bisher nur in Kulturschalen mit gezüchteten Nervenzellen gemacht, lebendes Gewebe ist viel komplexer. Da es sich immer ein bisschen bewegt, war es sehr schwierig, alle Verästelungen eines Neurons im Bild so hoch aufzulösen, dass wir einzelne Synapsen darstellen konnten."

Der Lohn der Anstrengungen: Konnerth und seine Kollegen entdeckten, dass ein "Richtungs"-Neuron bei mehreren, unterschiedlichen Bewegungen des Balkens vor dem Auge Signale von den mit ihm vernetzten Nervenzellen empfängt. "Hier wird es richtig spannend", meint Konnerth. Denn die "Richtungs"-Nervenzelle versendet nur ein Ausgangssignal wie zum Beispiel "bewegt sich von unten nach oben". Offenbar verrechnet sie also die unterschiedlichen Eingangssignale miteinander und reduziert damit die Fülle eintreffender Einzeldaten auf wesentliche Informationen, die für das klare Sehen einer Bewegung wichtig sind.

In Zukunft will Konnerth mit seinem Forschungsansatz auch den Prozess des Lernens an einer einzelnen Nervenzelle beobachten. Viele Nervenenden senden praktisch nie Signale an den Antennen-Baum eines "Richtungs"-Neurons. Wenn das Auge etwa andere Arten von Bewegungen wahrnimmt, könnten solche stummen Nervenenden aktiv werden. Das würde den Verrechnungsmechanismus der "Richtungs"-Nervenzelle so verändern, dass sie ihre bevorzugte Richtung ändert: Die Maus würde lernen, bestimmte Bewegungen vielleicht besser oder schneller zu sehen. "Da wir mit unserer Methode gleichzeitig die Verschaltung und das Verhalten ein und derselben Nervenzelle im Gehirn beobachten können, werden wir einen wichtigen Beitrag zum Verständnis von Lernen leisten können", ist Konnerth überzeugt. "Hier an der TU München arbeiten wir eng mit Physikern und Ingenieuren zusammen. So haben wir beste Chancen, die räumliche und zeitliche Auflösung der Bilder weiter zu verbessern."
Bildmaterial:
http://mediatum2.ub.tum.de/node?id=977436
Nature-Artikel:
Dendritic organization of sensory input to cortical neurons in vivo
Hongbo Jia, Nathalie L. Rochefort, Xiaowei Chen, Arthur Konnerth
DOI: 10.1038/nature08947

Die Arbeit wurde unterstützt durch Mittel der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Schiedel-Stiftung.

Kontakt:
Prof. Arthur Konnerth
Fellow des Institute for Advanced Study (IAS) der TUM (1)
Direktor des Instituts für Neurowissenschaften
Technische Universität München
Tel. 089 4140 3351
office.konnerth@lrz.tum.de
www.ifn.me.tum.de

(1) Das TUM Institute for Avanced Study (TUM-IAS) wurde mit Mitteln der Exzellenzinitiative gegründet und bietet international ausgewiesenen Spitzenforschern (IAS-Fellows) ein Arbeitsumfeld, in dem sie frei von den bürokratischen Belastungen des klassischen Universitätsalltags neue, risikoreiche und interdisziplinäre Forschungsprojekte verfolgen können. TUM-IAS steht wissenschaftlichen Pionieren aus der TUM, der forschenden Industrie und forschenden Einrichtungen aus dem In- und Ausland offen.

| Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten