Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen mit den grauen Zellen

29.04.2010
Neue Mikroskopie-Methode macht Nervenschaltungen im Gehirn sichtbar

Wenn sich ein Gegenstand vor unserem Auge bewegt, feuern bestimmte Nervenzellen in unserem Hinterkopf elektrische Signale – je nach Bewegungsrichtung sind andere Zellen aktiv. Wissenschaftler der Technischen Universität München (TUM) können jetzt im Gehirn beobachten, wie einzelne dieser Nervenzellen solche Bewegungssignale empfangen und verarbeiten: Erstmals kann eine neue Mikroskopie-Methode einzelne, ein Tausendstel Millimeter kleine Nervenverschaltungen (Synapsen) darstellen. In Zukunft könnte die Methode verstehen helfen, wie Lernen auf der Ebene einer Nervenzelle funktioniert. Die Forschungsergebnisse wurden jetzt in der Zeitschrift Nature veröffentlicht.

Licht, das auf die Netzhaut des menschlichen Auges fällt, trifft dort auf 126 Millionen Sinneszellen, die es in elektrische Signale umwandeln. Bereits die kleinste Einheit des Lichts, ein Photon, kann eine der Sinneszellen stimulieren. Die Folge: Ungeheure Datenmengen müssen verarbeitet werden, damit wir sehen können. Die Datenverarbeitung beginnt bereits in der Netzhaut, aber das fertige Bild entsteht erst im Gehirn, genauer: in der Sehrinde im hinteren Teil des Großhirns.

Die Wissenschaftler um den TUM-Neurophysiologen Prof. Arthur Konnerth interessieren sich für eine bestimmte Sorte von Nervenzellen in der Sehrinde, die auf Bewegungen reagiert. Ob vor dem Auge ein Balken von unten nach oben wandert oder von rechts nach links: Stets reagieren andere Nervenzellen der Sehrinde. Wie die gesendeten Impulse dieser "Richtungs"-Neuronen aussehen, ist gut bekannt - doch wie sieht das Eingangssignal aus? Das ist nicht leicht zu beantworten, denn jede der Nervenzellen besitzt einen ganzen Baum winziger, verästelter Antennen, an die hunderte anderer Nervenzellen mit ihren Synapsen andocken.

Um mehr über das Eingangssignal herauszufinden, schauten Konnerth und seine Mitarbeiter einer Maus beim Sehen zu. Dazu verfeinerten sie eine Mikroskopie-Methode, mit der sich bis zu einem halben Millimeter in das Hirngewebe hineinblicken und eine einzelne Zelle beobachten lässt, die sogenannte 2-Photonen-Fluoreszenz-Mikroskopie. Gleichzeitig leiteten sie mit haarfeinen Pipetten elektrische Signale an einzelnen Baum-Fortsätzen derselben Nervenzelle ab (Patch-Clamp-Technik). Konnerth: "Ähnliche Versuche wurden bisher nur in Kulturschalen mit gezüchteten Nervenzellen gemacht, lebendes Gewebe ist viel komplexer. Da es sich immer ein bisschen bewegt, war es sehr schwierig, alle Verästelungen eines Neurons im Bild so hoch aufzulösen, dass wir einzelne Synapsen darstellen konnten."

Der Lohn der Anstrengungen: Konnerth und seine Kollegen entdeckten, dass ein "Richtungs"-Neuron bei mehreren, unterschiedlichen Bewegungen des Balkens vor dem Auge Signale von den mit ihm vernetzten Nervenzellen empfängt. "Hier wird es richtig spannend", meint Konnerth. Denn die "Richtungs"-Nervenzelle versendet nur ein Ausgangssignal wie zum Beispiel "bewegt sich von unten nach oben". Offenbar verrechnet sie also die unterschiedlichen Eingangssignale miteinander und reduziert damit die Fülle eintreffender Einzeldaten auf wesentliche Informationen, die für das klare Sehen einer Bewegung wichtig sind.

In Zukunft will Konnerth mit seinem Forschungsansatz auch den Prozess des Lernens an einer einzelnen Nervenzelle beobachten. Viele Nervenenden senden praktisch nie Signale an den Antennen-Baum eines "Richtungs"-Neurons. Wenn das Auge etwa andere Arten von Bewegungen wahrnimmt, könnten solche stummen Nervenenden aktiv werden. Das würde den Verrechnungsmechanismus der "Richtungs"-Nervenzelle so verändern, dass sie ihre bevorzugte Richtung ändert: Die Maus würde lernen, bestimmte Bewegungen vielleicht besser oder schneller zu sehen. "Da wir mit unserer Methode gleichzeitig die Verschaltung und das Verhalten ein und derselben Nervenzelle im Gehirn beobachten können, werden wir einen wichtigen Beitrag zum Verständnis von Lernen leisten können", ist Konnerth überzeugt. "Hier an der TU München arbeiten wir eng mit Physikern und Ingenieuren zusammen. So haben wir beste Chancen, die räumliche und zeitliche Auflösung der Bilder weiter zu verbessern."
Bildmaterial:
http://mediatum2.ub.tum.de/node?id=977436
Nature-Artikel:
Dendritic organization of sensory input to cortical neurons in vivo
Hongbo Jia, Nathalie L. Rochefort, Xiaowei Chen, Arthur Konnerth
DOI: 10.1038/nature08947

Die Arbeit wurde unterstützt durch Mittel der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Schiedel-Stiftung.

Kontakt:
Prof. Arthur Konnerth
Fellow des Institute for Advanced Study (IAS) der TUM (1)
Direktor des Instituts für Neurowissenschaften
Technische Universität München
Tel. 089 4140 3351
office.konnerth@lrz.tum.de
www.ifn.me.tum.de

(1) Das TUM Institute for Avanced Study (TUM-IAS) wurde mit Mitteln der Exzellenzinitiative gegründet und bietet international ausgewiesenen Spitzenforschern (IAS-Fellows) ein Arbeitsumfeld, in dem sie frei von den bürokratischen Belastungen des klassischen Universitätsalltags neue, risikoreiche und interdisziplinäre Forschungsprojekte verfolgen können. TUM-IAS steht wissenschaftlichen Pionieren aus der TUM, der forschenden Industrie und forschenden Einrichtungen aus dem In- und Ausland offen.

| Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

nachricht Aktive Prothese verändert Hirnfunktionen von Schlaganfall-Patienten
15.09.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik