Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schutz vor plötzlichem Kindstod

11.08.2011
Dehnbare Leiterplatten werden sowohl in der Elektronik als auch in der Medizin eingesetzt

Klapphandys, Laptops oder I-Pads sind damit ausgestattet: flexible Leiterplatten. Gemeinsam ist allen diesen technischen Geräten, dass die Biegung der Leiterplatte um eine Achse stattfindet.

Ziel des EU-Projektes „STELLA“ (stretchable electronics for large area applications) war es darüber hinaus, eine Leiterplatte zu entwickeln, die dehnbar ist und sich so an beliebige Oberflächen anschmiegen kann. „Potentielle Anwendungen für so ein Produkt sind zahlreich“, weiß Dr. Thomas Löher, vom Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) und Projektmanager für STELLA an der TU Berlin. Vor allem die Medizin profitiert davon.

„Wenn Sensoren möglichst dicht an der Haut getragen werden müssen, zum Beispiel um bestimmte Vitalparameter zu überwachen, ist der Einsatz dehnbarer Leiterplatten hochinteressant: Sie passen sich jeder Bewegung an, lassen sich hervorragend in Textilien integrieren, sind körpergerecht und atmungsaktiv.“

So haben die Wissenschaftlerinnen und Wissenschaftler vom IZM und der TU Berlin bereits Vorläuferprodukte für eine elektronische Verbandseinlage entwickelt, die Druck und Feuchtigkeit in einem Verband messen kann. Weitere Ideen sind ein Strampelanzug, der die kontinuierliche Atembewegung erfasst und vor plötzlichem Kindstod schützen soll, oder eine Schuheinlage für Diabetiker, die die Druckbelastung und Abnutzung der Fußsohle misst.

Die hellbraune Folie erinnert in Konsistenz und Haptik an etwas zwischen Frischhaltefolie und dünner Silikon-Badekappe. Das Trägermaterial ist aber thermoplastisches Polyurethan, ein Kunststoff, der in der Textilindustrie weit verbreitet ist, so zum Beispiel als atmungsaktive Membran in Regenbekleidung. Auf dieses Substrat „kleben“ die Forscher eine hauchdünne, circa 20 Mikrometer dünne Kupferfolie. „Um die nicht dehnbaren Kupferbahnen elastisch zu machen, strukturieren wir sie mit Ätz- und Belichtungsverfahren in eine Mäanderform“, so Löher. Das dehnbare Substrat ist danach von wellenförmigen Kupferbahnen durchzogen. Diese ursprünglich starren Kupferleitungen können dadurch bis zu dem Dreifachen ihrer ursprünglichen Länge gedehnt werden. In mehreren Schritten werden die Leiterbahnen mit verschiedenen, flexiblen Schutzschichten verkapselt, so dass am Ende eine fertig vorstrukturierte, flexible Leiterplatte entsteht, auf die elektronische Komponenten aufgebracht werden können.

„Ein Knackpunkt dieser Technik liegt an dem Übergang zwischen dem dehnbaren Substrat und den starren Komponenten. Damit letztere nicht einfach abplatzen, wenn die Leiterplatte gedehnt wird, haben wir um die Komponenten herum so genannte Zugsperren, feste Kupferinseln, eingebaut, die sich nicht dehnen“, berichtet Löher.

Von Anfang an verwendeten die Wissenschaftler für die dehnbaren Leiterplatten so weit wie möglich Standardverfahren, um die Integration in eine industrielle Produktion zu erleichtern. So können die Leiterplatten mit einer professionellen Textil-Laminierpresse einfach auf einen Stoff laminiert werden.

In dem Anschlussprojekt von STELLA, „PLACE-it“, arbeitet Löher zurzeit mit dem Mediziner Professor Norbert Gretz von der Universität Heidelberg zusammen. Dabei soll die Nierenfunktion von Patienten mit einem nichtinvasiven und wenig belastenden Verfahren untersucht werden. Bei Patienten mit Diabetes oder anderen schweren Stoffwechselerkrankungen muss die Nierenfunktion regelmäßig kontrolliert werden. Dazu wird die so genannte glomeruläre Filtrationsrate (GFR) bestimmt – ein Wert, der angibt, inwieweit die Nieren ihre reinigende Filterfunktion übernehmen. Dazu existieren zwar exakte Methoden, diese sind aber sehr aufwändig und belastend. Im Alltag werden daher nur Näherungswerte aus dem Urin bestimmt, die leicht falsch interpretiert werden können. Gretz möchte einen fluoreszierenden Standardmarker einsetzen, den die Niere in den Urin filtert. Die Patienten werden mit einem Pflaster ausgestattet, das eine dehnbare Leiterplatte enthält, auf der – neben Steuer- und Kontrollelektronik – eine Leuchtdiode und eine Photodiode installiert sind. Die Leuchtdiode strahlt durch die Haut und regt den Marker im Blut an, zu fluoreszieren. Das Fluoreszenzsignal wiederum wird von der Photodiode gemessen. Je besser die Niere arbeitet, desto schneller wird der Marker ausgeschieden und desto schneller klingt die Fluoreszenz ab. Tierversuche zeigen, dass auf diese Art erstmalig eine exakte Bestimmung der GFR in Echtzeit möglich ist.

Katharina Jung

Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de

Weitere Berichte zu: GFR Kindstod Kupferbahnen Leiterplatte Leuchtdiode Marker Niere Nierenfunktion Substrat

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise