Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle MRT ohne teure Magneten

17.12.2013
Kontinuierliche Hyperpolarisation macht mobile Schnittbild-Anlagen möglich

Ein internationales Forscherteam um Dr. Jan-Bernd Hövener aus der Medizinphysik der Radiologischen Klinik am Universitätsklinikum Freiburg hat eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt.

Im Gegensatz zu gängigen Verfahren erfordert sie keine starken und teuren Magneten und erzeugt trotzdem auch in sehr schwachen Magnetfeldern ein viel stärkeres MRT-Signal, als es derzeit mit den stärksten Magneten möglich ist.

Zum ersten Mal ist es nun gelungen, diese Signalverstärkung kontinuierlich bereitzustellen und damit hochaufgelöste Mehrfach-Aufnahmen innerhalb von wenigen Minuten zu erlauben. Dies könnte der entscheidende Schritt sein, um MRT auf lange Sicht auch für mobile Einsätze zugänglich zu machen. Die Wissenschaftler publizierten ihre Forschungsergebnisse in der renommierten Fachzeitschrift Nature Communications.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen sehr gut dargestellt werden können. In einem künstlichen Magnetfeld werden die magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird. Die magnetischen Momente der Wasserstoffatome sind jedoch im Vergleich zur thermischen Energie des Gewebes so schwach, das sich nur ein winziger Anteil ausrichtet und somit messen lässt.

Im Magnetfeld der Erde ist etwa eins von sieben Milliarden Wasserstoffatomen sichtbar, der Rest ist unsichtbar für das MRT. Das 100.000-fach stärkere, künstliche Magnetfeld der klinischen MR-Tomographen erhöht diese Ausrichtung zwar und erlaubt damit hochauflösende Aufnahmen. Jedoch werden auch mit diesen sehr teuren Spezialmagneten nur wenige Millionstel aller Wasserstoffatome sichtbar.

Hövener und seine Kollegen wählten daher einen anderen Ansatz, um das MRT-Signal zu erhöhen: Die sogenannte Hyperpolarisation bewirkt, dass sich ein weit größerer Anteil der Wasserstoffatome magnetisch ausrichtet. Bisherige Versuche in dieser Richtung waren stets mit dem Problem behaftet, dass sich die Atome nur einmal ausrichten ließen und diese Ausrichtung durch die MRT-Aufnahme wieder zerstört wurde. Das Forscherteam aus Freiburg und York (UK) setzte daher auf Parawasserstoff: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, kann mittels einer chemischen Austauschreaktion andere Moleküle magnetisch ausrichten – und zwar im richtigen Magnetfeld immer wieder aufs Neue. Dieser dauerhafte Polarisierungseffekt steht beliebig lange zur Verfügung, erneuert sich nach jeder Messung und macht Mehrfach-Aufnahmen möglich. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen.

„Es ist sehr aufregend, diesen neuartigen physikalischen Effekt zu erforschen“, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht und Mitglied des Deutschen Konsortiums für Translationale Krebsforschung ist. Zahlreiche Anwendungen in der Chemie und der Molekularbiologie sind denkbar. Auf lange Sicht hofft der Freiburger Medizinphysiker, dass die kontinuierliche Hyperpolarisation für die biomedizinische Forschung nutzbar wird: „Wasserstoffgas scheint für Menschen gut verträglich zu sein. Der Weg ist noch weit, doch die medizinische Diagnostik könnte entscheidend profitieren“, so Hövener. Kostengünstige MRT-Geräte für Screenings seien ebenso denkbar wie tragbare MRTs für die Diagnose vor Ort. Kleinere, günstige Magnetspulen, die mit Solarzellen betrieben werden, könnten die MRT-Technologie zudem auch in entlegenen Gebieten zugänglich machen.

Titel der Originalpublikation: A hyperpolarized equilibrium for magnetic resonance

doi: 10.1038/ncomms3946

Das Deutsche Konsortium für Translationale Krebsforschung ist eine gemeinsame Initiative des Bundesministeriums für Bildung und Forschung, der beteiligten Bundesländer, der Deutschen Krebshilfe und des Deutschen Krebsforschungszentrums (DKFZ). In ihm verbindet sich das DKFZ mit sieben onkologisch besonders ausgewiesenen Universitätskliniken in Deutschland.

Kontakt:
Dr. Jan-Bernd Hövener
Gruppenleiter Hyperpolarisation
Medizinphysik, Klinik für Radiologie, Universitätsklinikum Freiburg
Mitglied des Deutschen Krebsforschungszentrums und des Deutschen Konsortiums für Translationale Krebsforschung
Telefon: 0761 270-93910
jan.hoevener@uniklinik-freiburg.de

Benjamin Waschow | idw
Weitere Informationen:
http://www.nature.com/ncomms/2013/131216/ncomms3946/full/ncomms3946.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzforschung - Neue Katheterklappe in Tübingen entwickelt
16.01.2017 | Universitätsklinikum Tübingen

nachricht Fernüberwachung bei Herzschwäche kann Klinikaufenthalt ersparen
09.01.2017 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau