Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle MRT ohne teure Magneten

17.12.2013
Kontinuierliche Hyperpolarisation macht mobile Schnittbild-Anlagen möglich

Ein internationales Forscherteam um Dr. Jan-Bernd Hövener aus der Medizinphysik der Radiologischen Klinik am Universitätsklinikum Freiburg hat eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt.

Im Gegensatz zu gängigen Verfahren erfordert sie keine starken und teuren Magneten und erzeugt trotzdem auch in sehr schwachen Magnetfeldern ein viel stärkeres MRT-Signal, als es derzeit mit den stärksten Magneten möglich ist.

Zum ersten Mal ist es nun gelungen, diese Signalverstärkung kontinuierlich bereitzustellen und damit hochaufgelöste Mehrfach-Aufnahmen innerhalb von wenigen Minuten zu erlauben. Dies könnte der entscheidende Schritt sein, um MRT auf lange Sicht auch für mobile Einsätze zugänglich zu machen. Die Wissenschaftler publizierten ihre Forschungsergebnisse in der renommierten Fachzeitschrift Nature Communications.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen sehr gut dargestellt werden können. In einem künstlichen Magnetfeld werden die magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird. Die magnetischen Momente der Wasserstoffatome sind jedoch im Vergleich zur thermischen Energie des Gewebes so schwach, das sich nur ein winziger Anteil ausrichtet und somit messen lässt.

Im Magnetfeld der Erde ist etwa eins von sieben Milliarden Wasserstoffatomen sichtbar, der Rest ist unsichtbar für das MRT. Das 100.000-fach stärkere, künstliche Magnetfeld der klinischen MR-Tomographen erhöht diese Ausrichtung zwar und erlaubt damit hochauflösende Aufnahmen. Jedoch werden auch mit diesen sehr teuren Spezialmagneten nur wenige Millionstel aller Wasserstoffatome sichtbar.

Hövener und seine Kollegen wählten daher einen anderen Ansatz, um das MRT-Signal zu erhöhen: Die sogenannte Hyperpolarisation bewirkt, dass sich ein weit größerer Anteil der Wasserstoffatome magnetisch ausrichtet. Bisherige Versuche in dieser Richtung waren stets mit dem Problem behaftet, dass sich die Atome nur einmal ausrichten ließen und diese Ausrichtung durch die MRT-Aufnahme wieder zerstört wurde. Das Forscherteam aus Freiburg und York (UK) setzte daher auf Parawasserstoff: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, kann mittels einer chemischen Austauschreaktion andere Moleküle magnetisch ausrichten – und zwar im richtigen Magnetfeld immer wieder aufs Neue. Dieser dauerhafte Polarisierungseffekt steht beliebig lange zur Verfügung, erneuert sich nach jeder Messung und macht Mehrfach-Aufnahmen möglich. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen.

„Es ist sehr aufregend, diesen neuartigen physikalischen Effekt zu erforschen“, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht und Mitglied des Deutschen Konsortiums für Translationale Krebsforschung ist. Zahlreiche Anwendungen in der Chemie und der Molekularbiologie sind denkbar. Auf lange Sicht hofft der Freiburger Medizinphysiker, dass die kontinuierliche Hyperpolarisation für die biomedizinische Forschung nutzbar wird: „Wasserstoffgas scheint für Menschen gut verträglich zu sein. Der Weg ist noch weit, doch die medizinische Diagnostik könnte entscheidend profitieren“, so Hövener. Kostengünstige MRT-Geräte für Screenings seien ebenso denkbar wie tragbare MRTs für die Diagnose vor Ort. Kleinere, günstige Magnetspulen, die mit Solarzellen betrieben werden, könnten die MRT-Technologie zudem auch in entlegenen Gebieten zugänglich machen.

Titel der Originalpublikation: A hyperpolarized equilibrium for magnetic resonance

doi: 10.1038/ncomms3946

Das Deutsche Konsortium für Translationale Krebsforschung ist eine gemeinsame Initiative des Bundesministeriums für Bildung und Forschung, der beteiligten Bundesländer, der Deutschen Krebshilfe und des Deutschen Krebsforschungszentrums (DKFZ). In ihm verbindet sich das DKFZ mit sieben onkologisch besonders ausgewiesenen Universitätskliniken in Deutschland.

Kontakt:
Dr. Jan-Bernd Hövener
Gruppenleiter Hyperpolarisation
Medizinphysik, Klinik für Radiologie, Universitätsklinikum Freiburg
Mitglied des Deutschen Krebsforschungszentrums und des Deutschen Konsortiums für Translationale Krebsforschung
Telefon: 0761 270-93910
jan.hoevener@uniklinik-freiburg.de

Benjamin Waschow | idw
Weitere Informationen:
http://www.nature.com/ncomms/2013/131216/ncomms3946/full/ncomms3946.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzultraschall: Die dritte Dimension
21.03.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

nachricht «Instrumentenflug» zum Innenohr
16.03.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie