Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle MRT ohne teure Magneten

17.12.2013
Kontinuierliche Hyperpolarisation macht mobile Schnittbild-Anlagen möglich

Ein internationales Forscherteam um Dr. Jan-Bernd Hövener aus der Medizinphysik der Radiologischen Klinik am Universitätsklinikum Freiburg hat eine neue, kostengünstige Methode für die Magnetresonanztomographie (MRT) entwickelt.

Im Gegensatz zu gängigen Verfahren erfordert sie keine starken und teuren Magneten und erzeugt trotzdem auch in sehr schwachen Magnetfeldern ein viel stärkeres MRT-Signal, als es derzeit mit den stärksten Magneten möglich ist.

Zum ersten Mal ist es nun gelungen, diese Signalverstärkung kontinuierlich bereitzustellen und damit hochaufgelöste Mehrfach-Aufnahmen innerhalb von wenigen Minuten zu erlauben. Dies könnte der entscheidende Schritt sein, um MRT auf lange Sicht auch für mobile Einsätze zugänglich zu machen. Die Wissenschaftler publizierten ihre Forschungsergebnisse in der renommierten Fachzeitschrift Nature Communications.

Die Magnetresonanztomographie ist ein Schnittbildverfahren, mit dem Weichgewebestrukturen sehr gut dargestellt werden können. In einem künstlichen Magnetfeld werden die magnetischen Momente der Wasserstoffatome im Körpergewebe ausgerichtet und durch Radiofrequenzwellen angeregt, woraufhin sie wieder in ihren ursprünglichen Zustand zurückkehren. Dabei werden je nach Struktur und Wassergehalt des Gewebes unterschiedliche Signale ausgesendet, anhand derer das Schnittbild berechnet wird. Die magnetischen Momente der Wasserstoffatome sind jedoch im Vergleich zur thermischen Energie des Gewebes so schwach, das sich nur ein winziger Anteil ausrichtet und somit messen lässt.

Im Magnetfeld der Erde ist etwa eins von sieben Milliarden Wasserstoffatomen sichtbar, der Rest ist unsichtbar für das MRT. Das 100.000-fach stärkere, künstliche Magnetfeld der klinischen MR-Tomographen erhöht diese Ausrichtung zwar und erlaubt damit hochauflösende Aufnahmen. Jedoch werden auch mit diesen sehr teuren Spezialmagneten nur wenige Millionstel aller Wasserstoffatome sichtbar.

Hövener und seine Kollegen wählten daher einen anderen Ansatz, um das MRT-Signal zu erhöhen: Die sogenannte Hyperpolarisation bewirkt, dass sich ein weit größerer Anteil der Wasserstoffatome magnetisch ausrichtet. Bisherige Versuche in dieser Richtung waren stets mit dem Problem behaftet, dass sich die Atome nur einmal ausrichten ließen und diese Ausrichtung durch die MRT-Aufnahme wieder zerstört wurde. Das Forscherteam aus Freiburg und York (UK) setzte daher auf Parawasserstoff: Normales Wasserstoffgas, dessen Atomkerne sich in einem besonderen Quantenzustand befinden, kann mittels einer chemischen Austauschreaktion andere Moleküle magnetisch ausrichten – und zwar im richtigen Magnetfeld immer wieder aufs Neue. Dieser dauerhafte Polarisierungseffekt steht beliebig lange zur Verfügung, erneuert sich nach jeder Messung und macht Mehrfach-Aufnahmen möglich. Selbst in einem sehr schwachen Magnetfeld, das mit einer einfachen Batterie erzeugt werden kann, entsteht so ein hundert Mal stärkeres Signal als in kliniküblichen MRT-Anlagen.

„Es ist sehr aufregend, diesen neuartigen physikalischen Effekt zu erforschen“, sagt Hövener, der in der Medizinphysik der Radiologischen Klinik des Universitätsklinikums Freiburg forscht und Mitglied des Deutschen Konsortiums für Translationale Krebsforschung ist. Zahlreiche Anwendungen in der Chemie und der Molekularbiologie sind denkbar. Auf lange Sicht hofft der Freiburger Medizinphysiker, dass die kontinuierliche Hyperpolarisation für die biomedizinische Forschung nutzbar wird: „Wasserstoffgas scheint für Menschen gut verträglich zu sein. Der Weg ist noch weit, doch die medizinische Diagnostik könnte entscheidend profitieren“, so Hövener. Kostengünstige MRT-Geräte für Screenings seien ebenso denkbar wie tragbare MRTs für die Diagnose vor Ort. Kleinere, günstige Magnetspulen, die mit Solarzellen betrieben werden, könnten die MRT-Technologie zudem auch in entlegenen Gebieten zugänglich machen.

Titel der Originalpublikation: A hyperpolarized equilibrium for magnetic resonance

doi: 10.1038/ncomms3946

Das Deutsche Konsortium für Translationale Krebsforschung ist eine gemeinsame Initiative des Bundesministeriums für Bildung und Forschung, der beteiligten Bundesländer, der Deutschen Krebshilfe und des Deutschen Krebsforschungszentrums (DKFZ). In ihm verbindet sich das DKFZ mit sieben onkologisch besonders ausgewiesenen Universitätskliniken in Deutschland.

Kontakt:
Dr. Jan-Bernd Hövener
Gruppenleiter Hyperpolarisation
Medizinphysik, Klinik für Radiologie, Universitätsklinikum Freiburg
Mitglied des Deutschen Krebsforschungszentrums und des Deutschen Konsortiums für Translationale Krebsforschung
Telefon: 0761 270-93910
jan.hoevener@uniklinik-freiburg.de

Benjamin Waschow | idw
Weitere Informationen:
http://www.nature.com/ncomms/2013/131216/ncomms3946/full/ncomms3946.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie