Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüssel zur Einzelzelltomographie entdeckt

21.10.2008
Ein Forscherteam um Prof. Josef Käs von der Universität Leipzig hat in Zusammenarbeit mit Wissenschaftlern aus Jena und Cambridge eine Methode entwickelt, mit der biologische Proben mittels Laserstrahlen eingefangen und präzise um definierte Winkel gedreht werden können. „Das könnte der Schlüssel zur Einzelzelltomographie sein", sagt Moritz Kreysing aus der Arbeitsgruppe Käs und Erstautor der diesbezüglichen Veröffentlichung.

Obgleich schon mehr als 400 Jahre alt, stellt die optische Mikroskopie auch heute noch eine der wichtigsten Methoden in der medizinischen Forschung dar.

Ihr Potential könnte sich jedoch in Folge einer Erfindung der Leipziger Forscher in Zusammenarbeit mit Wissenschaftlern der Universitäten Cambridge und Jena noch bedeutend erhöht werden, "denn das neue Verfahren könnte der Schlüssel zur bereits seit Längerem erprobten, zur Zeit aber noch unpraktikablen Einzelzelltomographie sein.", sagt Moritz Kreysing aus der Arbeitsgruppe von Professor Käs und Erstautor der Veröffentlichung in der aktuellen Ausgabe des internationalen Fachblattes Optics Express drehen

(Titelstory: OpticsExpress, Volume 16, Issue 21).

Anders als in der klassischen Mikroskopie, werden biologische Zellen bei dem neuen Verfahren unter dem Mikroskop gedreht und die dabei aufgenommenen Bilder computergestützt zu einem dreidimensionalen Modell verrechnet. Die so erzielbare Auflösung in der dritten Dimension ist dabei rund 2.5 mal höher als bei den heutigen Standards mit der Konfokal- und Dekonvolutionsmikroskopie.

Von fundamentaler Bedeutung ist die neue Erfindung im Zusammenhang mit der tomographischen Mikroskopie für die Integrität der lebenden Proben. Während Zellen, um ausgerichtet zu werden, bisher starken elektrischen Feldern oder unphysiologischem Greifwerkzeug ausgesetzt werden mussten, ermöglicht der sogenannte optische Zellrotator einen weit schonenderen Umgang mit dem anspruchsvollen Material. "Dieses bekommt von den eingesetzten Infrarotlasern außer einer minimalen Temperaturerhöhung praktisch nichts mit", so Moritz Kreysing. Das wohl interessanteste Anwendungsgebiet erschließe sich für die Erfindung daher wahrscheinlich in der von Artefakten geplagten Stammzellenforschung.

Links:
Die Originalpublikation bei OpticsExpress:
Open access article:
www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-21-16984&seq=0
Abstract:
www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16984
On the cover:
www.opticsinfobase.org/oe/issue.cfm?volume=16&issue=21
Weitere Informationen:
Prof. Dr. Josef A. Käs
Telefon: 0341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de

Dr. Bärbel Adams | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/~pwm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

nachricht Herzultraschall: Die dritte Dimension
21.03.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen