Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenkamera beobachtet Gen-Schalter in Aktion

14.11.2016

Mit einem leistungsstarken Röntgenlaser hat ein internationales Forscherteam erstmals einen Gen-Schalter in Aktion beobachtet. Die Untersuchung unter Leitung von Dr. Yun-Xing Wang vom US-Krebsforschungsinstitut (National Cancer Institute) zeigt die ultraschnelle Dynamik eines sogenannten Riboswitches, der einzelne Gene an- und ausschalten kann. Die angewendete Methode eröffnet neue Möglichkeiten zur Untersuchung zahlreicher grundlegender biochemischer Reaktionen, wie das Forscherteam im britischen Fachblatt „Nature“ berichtet.

„Die Untersuchung belegt, dass sich die Strukturveränderungen, die bei biochemischen Reaktionen oder bei Wechselwirkungen zwischen Molekülen ablaufen, mit Hilfe leistungsfähiger Röntgenlaser in Echtzeit aufzeichnen lassen”, erläutert Ko-Autor und DESY-Forscher Prof. Henry Chapman vom Hamburger Center for Free-Electron Laser Science (CFEL), einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.


Der Riboswitch-'Knopf' vor, während und nach (v.l.n.r.) dem Andocken des Signalmoleküls (grün).

Bild: Yun-Xing Wang und Jason Stagno, National Cancer Institute

Die Wissenschaftler haben einen Riboswitch des Bakteriums Vibrio vulnificus untersucht. Dieses ist ein enger Verwandter des Cholera-Erregers und kann schwer zu behandelnde Infektionen auslösen, die häufig tödlich verlaufen. Der Riboswitch wird von einem Signalmolekül aktiviert, einem sogenannten Liganden – in diesem Fall ist das die Nukleinbase Adenin.

Durch die Aktivierung ändert der Riboswitch seine Form. Das Gen, an dem er sich befindet, kann daraufhin nicht mehr abgelesen werden, ist also deaktiviert. Riboswitche gibt es vor allem bei Bakterien und Pilzen, nicht aber bei Säugetieren einschließlich dem Menschen. Diese Gen-Schalter könnten daher aussichtsreiche Angriffspunkte im Kampf gegen Infektionskrankheiten sein.

Um zu beobachten, wie der Schalter aktiviert wird, kristallisierten die Forscher seinen „Einschaltknopf“, also den Part, an den das Signalmolekül Adenin bindet. Dieser Knopf ist wissenschaftlich gesprochen ein Aptamer. Das bedeutet, dass seine molekulare Struktur aus einer Sequenz von Nukleinsäuren besteht und nicht wie Proteine aus Aminosäuren.

Die winzigen Aptamer-Kristalle schossen die Forscher in den extrem hellen Strahl des Röntgenlasers LCLS am US-Forschungszentrum SLAC in Kalifornien. Kristalle streuen Röntgenstrahlung auf charakteristische Weise, und aus dem Röntgenstreumuster lässt sich die Struktur des Kristalls und damit die seiner Bestandteile atomgenau berechnen. Daraus ergibt sich in diesem Fall die genaue räumliche Struktur des Aptamers.

In einer neuen, von Chapmans Gruppe entwickelten Apparatur lassen sich die Aptamer-Kristalle mit einer Lösung der Adenin-Signalmoleküle mischen. Das Adenin verteilt sich dabei in den kleinen Kristallen und drückt so gewissermaßen die Knöpfe der Riboswitche im Kristall. Die Adenin-getränkten Nanokristalle wurden in den Strahl des Röntgenlasers injiziert und mit diesem analysiert. Eine Verzögerungsleitung ermöglichte es dabei, die biochemische Reaktion zu einer kurzen Zeit nach ihrem Beginn festzuhalten.

Auf diese Weise entdeckten die Wissenschaftler einen Zwischenzustand des Gen-Schalters, der zuvor noch nie beobachtet worden war und im lebenden Organismus vermutlich nur für Millisekunden existiert. „Bisherige Experimente am SLAC-Röntgenlaser haben bereits biologische Reaktionen untersucht, die von Licht ausgelöst werden, wie etwa die Photosynthese.

Dieses ist das erste, das in Echtzeit und auf der atomaren Skala eine Reaktion beobachtet hat, die von der chemischen Wechselwirkung zweier Biomoleküle ausgelöst wird“, erläutert Wang. „Dies illustriert die einzigartigen Möglichkeiten von Freie-Elektronen-Röntgenlasern, die so keine andere existierende oder absehbare Technologie bieten kann. Sie sind wie eine Kamera mit sehr kurzer Belichtungszeit, so dass sich jede Bewegung eines Biomoleküls in der Aktion einfangen lässt.“

Die Untersuchung zeigt, dass das Konzept der „Mix-and-Inject“-Kristallographie funktioniert, wie Chapman betont, der auch Professor an der Universität Hamburg und Mitglied im Hamburger Exzellenzcluster Center for Ultrafast Imaging (CUI) ist.

Mit der Konformationsänderung der Aptamere änderte sich die Struktur und Symmetrie des gesamten Kristalls. Das geht nur bei sehr kleinen Kristallen, da größere durch die inneren Spannungen zerbrechen würden, die solche Formänderungen mit sich bringen. Außerdem kann sich nur in sehr kleinen Kristallen das Signalmolekül ausreichend schnell und gleichmäßig verteilen, so dass eine Untersuchung möglich wird. Derartige Nanokristalle erfordern extrem intensive Röntgenblitze zur Analyse, wie sie von Freie-Elektronen-Lasern wie LCLS oder dem European XFEL erzeugt werden, der zurzeit in der Metropolregion Hamburg in Betrieb genommen wird und dessen Hauptgesellschafter DESY ist.

„So gut wie alle Proteine, RNA und DNA interagieren mit Liganden oder Substraten und durchlaufen bestimmte Konformationsänderungen bei der Reaktion. Die Möglichkeit, diese Änderungen zu beobachten, ist eine Voraussetzung, um zu verstehen wie Biomakromoleküle ihre Funktion ausführen“, sagt Wang. „Bisher hat man diese Art von Reaktionen indirekt untersucht, bis auf sehr begrenzte Fälle, in denen die Konformationsänderungen sehr klein waren und den Kristall nicht zerbrochen haben. Mit unserer Methode können wir nun die Strukturen und Änderungen in einer viel breiteren Auswahl von biochemischen Wechselwirkungen und Reaktionen in Echtzeit beobachten.“

An der Studie beteiligt waren das US-Krebsforschungsinstitut sowie weitere US-Gesundheitsinstitute, SLAC, DESY, die Arizona State University, die Johns-Hopkins-Universität, das Hauptmann-Woodward-Institut für medizinische Forschung, das US-Strukturbiologiezentrum und das US-Forschungszentrum Argonne National Laboratory.


Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung:
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography; J.R. Stagno, Y. Liu, Y.R. Bhandari, C.E. Conrad, S. Panja, M. Swain, L. Fan, G. Nelson, C. Li, D.R. Wendel, T.A. White, J.D. Coe, M.O. Wiedorn, J. Knoska, D. Oberthuer, R.A. Tuckey, P. Yu, M. Dyba, S.G. Tarasov, U. Weierstall, T.D. Grant, C.D. Schwieters, J. Zhang, A.R. Ferré-D’Amaré, P. Fromme, D.E. Draper, M. Liang, M.S. Hunter, S. Boutet, K. Tan, X. Zuo, X. Ji, A. Barty, N.A. Zatsepin, H. N. Chapman, J.C.H. Spence, S. A. Woodson and Y.-X. Wang
„Nature”, 2016; DOI: 10.1038/nature20599

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1138&am... - Webversion dieser Pressemitteilung

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Berichte zu: Adenin Elektronen-Synchrotron Gen-Schalter LCLS Liganden RNA Röntgenkamera XFEL desy

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Fraunhofer IGB wirkt bei Gestaltung des europäischen Fahrplans für Organ-on-a-Chip-Technologie mit
14.11.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Entwicklung modernster Navigationssysteme für die Gefäßchirurgie
06.11.2017 | Universität zu Lübeck

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte