Wie rein ist rein? TOC-Bestimmung von Reinstwasser

Für die verschiedenen Anwendungsbereiche wird Reinstwasser unterschiedlicher Qualität benötigt. Die Europäische Pharmacopoeia definiert verschiedene Qualitäten. Sie unterscheidet zwischen „Purified Water“, „Highly Purified Water” und „Water for injection”.

„Purified Water“ dient direkt der Herstellung von Arzneimitteln. „Water for Injection“ ist Wasser, das zur Herstellung von Injektionslösungen verwendet wird, und „Water Highly Purified“ ist steriles Reinstwasser, das nicht dem Qualitätsstandard der Injektionswässer genügen muss, aber dennoch zur Herstellung verschiedenster Arzneien verwendet wird. Letzteres wird häufig genutzt, um Apparate zur Medikamentenherstellung zu spülen und zu reinigen.

Obgleich die Herstellung und die Qualität der verschiedenen Wässer in der Europäischen Pharmacopoeia unterschiedlich beschrieben wird, ist allen ein Grenzwert gleich: die maximale Belastung an organischen Bestandteilen.

Das Maß der organischen Verunreinigung eines Wassers drückt sich durch den TOC-Gehalt (Total Organic Carbon) aus. Der TOC gibt die gesamte Massenkonzentration des Kohlenstoffs aus allen in der Probe vorkommenden organischen Verbindungen an. Auch die Europäische Pharmacopoeia kennt diesen Summenparameter und gibt für alle beschriebenen Wässer einen maximalen Grenzwert von 500 ppb TOC vor.

Die TOC-Bestimmung nach EP 2.2.44

Zur Bestimmung des TOC werden verschiedene Verfahren genutzt. Sie unterscheiden sich in der Art der Oxidationstechnik und des Rechenverfahrens. In der EP 2.2.44 wird keine bestimmte Oxidationstechnik für die TOC-Bestimmung vorgegeben. Die TOC-Systeme müssen lediglich zwischen dem anorganischen und dem organischen Kohlenstoff unterscheiden können; das kann durch Entfernung des anorganischen Kohlenstoffs (NPOC-Methode) oder durch separate Bestimmung (Differenzmethode) erfolgen. Die Nachweisgrenze für TOC muss mindestens bei 0,05 mg/l liegen. Die Eignung der Methode muss in einem Systemeignungstest nachgewiesen werden.

Für den Systemeignungstest wird eine Standardlösung aus Sucrose (Saccharose) mit einem Kohlenstoffgehalt von 0,5 mg/l erstellt. Danach wird eine Kontroll-Lösung aus 1,4-Benzochinon mit gleichem Kohlenstoffgehalt angesetzt. Das hierzu verwendete Nullwasser (Reinstwasser) darf einen TOC-Gehalt von 0,1 mg/l nicht überschreiten. Von den Messwerten der Standardsubstanzen wird der Gehalt des Nullwassers generell abgezogen.

Sucrose dient bei diesem Systemeignungstest als leicht oxidierbarer Stoff und das 1,4-Benzochinon als schwer oxidierbar. Die Wiederfindung der schwer oxidierbaren Substanz dient der Orientierung, ob die Methode zur Bestimmung des TOC geeignet ist. Akzeptiert werden Ergebnisse zwischen 85…115 %.

TOC-Bestimmung im Reinstwasser

In der TOC-Analytik haben sich zwei Oxidationstechniken durchgesetzt – die katalytische Verbrennung und die nass-chemische Oxidation. Die katalytische Verbrennung setzt die Kohlenstoffverbindungen mit Hilfe hoher Temperatur und einem Katalysator in CO2 um; anschließend wird das entstandene CO2 mit einem NDIR-Detektor detektiert. Die nass-chemische Oxidation nutzt die Kombination von UV-Strahlung und Persulfat zur Oxidation. Beide Methoden können zur TOC-Bestimmung in Reinstwasser eingesetzt werden.

Welche der beiden Techniken für die Anwendungen die bessere Lösung bietet, lässt sich nicht pauschal beantworten, sondern erfordert eine genaue Betrachtung der Applikation. Shimadzu bietet mit seinen TOC-Analysatoren beide Möglichkeiten. Die Geräte der neuen TOC-L-Familie bieten die katalytische Verbrennungsoxidation, und die TOC-VW-Geräte erlauben die kraftvolle UV-Oxidation.

Die Geräte der TOC-L-Serie nutzten die bewährte katalytische Oxidation bei 680 °C. Die integrierte Probenvorbereitung (ansäuern und ausgasen) in der Injektionsspritze reduziert den Arbeitsaufwand für die Nutzer erheblich, da Verdünnen, Ansäuern und Ausgasen vom Gerät übernommen werden. Der Messbereich ist durch die automatische Verdünnung von 4 ppb bis 30 000 ppm erweitert. Zudem lässt sich der Standard zur Kalibrierung des TOC-Gehaltes automatisch verdünnen. Aus einer einzigen Stammlösung lässt sich so automatisch eine beliebige Mehrpunkt-Kalibrierung erstellen.

Zusätzlich lässt sich die Verbrennungstechnik mit dem Modul TNM-L koppeln, so dass bei nur einer Injektion simultan der gesamtgebundene Stickstoff erfasst wird (simultane TOC/TNb-Bestimmung). Hierbei wird auf die DIN/EN-konforme Bestimmung über Chemielumineszenz-Detektion zurückgegriffen. Die katalytische Verbrennung erfolgt hier bei 720 °C. Die simultane TOC/TNb-Bestimmung ist besonders für die Reinigungsvalidierung interessant, da hier potenziell eine differenzierte Betrachtung zwischen Reinigungssubstanz und Produkt möglich ist.

Die zentrale Technik des TOC-VWP-Analysators ist die kraftvolle Oxidation durch Natriumpersulfat und der UV-Oxidation bei 80 °C. Da zur Bestimmung eine Persulfatlösung genutzt wird, ist es wichtig, dass sie keine Verunreinigungen enthält, die den eigentlichen Messwert verfälschen könnten.

Der TOC-VWP besitzt hierfür eine automatische Reagenzienvorbereitung, die eventuelle Verunreinigungen der Persulfatlösung beseitigt. Damit ist sichergestellt, dass der ermittelte TOC-Wert wirklich aus der Messprobe kommt – und nicht aus der verwendeten Reagenzienlösung. Zusammen mit dem großen Injektionsvolumen (bis zu 20,4 ml) und dem hochempfindlichen NDIR-Detektor führt dies zu einer extrem niedrigen Detektionsgrenze und hervorragenden Reproduzierbarkeiten im unteren ppb-Bereich. Aus diesem Grund bietet sich der TOC-VWP/WS besonders zur TOC-Bestimmung im Ultra-Spurenbereich an.

Schlussfolgerung

Der neue Analysator TOC-LCPH wie auch der bewährte Analysator TOC-VWP mit ihren unterschiedlichen Oxidationsmethoden eignen sich für die TOC-Bestimmung nach EP 2.2.44. Der Vorteil der Verbrennungsmethode liegt in dem hohen Oxidationspotenzial, besonders wenn sich Partikel in der Probe befinden. Außerdem können simultane TOC/TNb-Messungen durchgeführt werden, wobei sich der Informationsgehalt erhöht.

Der Vorteil der nass-chemischen Oxidation liegt in dem sehr hohen Injektionsvolumen, das den empfindlicheren Messbereich und die hohe Genauigkeit im unteren ppb-Bereich bewirkt.

Produktspezialist TOC, Shimadzu Deutschland GmbH, Kontakt: info@shimadzu.de, http://www.shimadzu.de.

Media Contact

Sascha Hupach*) LABO

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer