Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realistische Modelle erhöhen Erfolgschancen von Schädeloperationen

03.07.2014

Aufwändige chirurgische Eingriffe bei Kindern sind bereits erfolgreich verlaufen

Das Wachstum des Gehirns wird bei manchen Kindern dadurch gefährdet, dass Schädelnähte bereits in den ersten Lebensmonaten verknöchern. Der Schädel muss dann geöffnet und neu zusammengefügt werden.


Schädelkorrektur am Modell

Die Erfolgschancen eines derart sensiblen Eingriffs steigen, wenn Ärzte die notwendige Schädelkorrektur an einem Modell erproben können. Ein neues, an der Universität Bayreuth koordiniertes Verbundprojekt soll die Konstruktion und den 3D-Druck individueller Rapid Prototyping-Schädelmodelle optimieren.

Für eine gesunde Entwicklung von Kindern ist es entscheidend, dass ihre Schädelknochen dem Gehirn jederzeit genügend Platz für ein normales gesundes Wachstum bieten. Das Wachstum des Gehirns wird jedoch bei manchen Kindern dadurch gefährdet, dass Schädelnähte vorzeitig - also bereits in den ersten Lebensmonaten - verknöchern.

Diese so genannten Kraniosynostosen können bewirken, dass der Schädel nicht ausreichend flexibel ist, um dem sich entwickelnden Gehirn ausreichend Raum zu bieten. Der Schädel muss dann in den ersten Lebensmonaten geöffnet und neu zusammengefügt werden. Eine solche Operation verlangt den chirurgischen Teams ein hohes Maß an Sorgfalt und Präzision ab.

Enge Zusammenarbeit von Forschung und chirurgischer Praxis

Die Erfolgschancen eines derart sensiblen Eingriffs steigen, wenn Ärzte die notwendige Schädelkorrektur an einem Modell erproben können. Falls dieses mit der Form des kindlichen Schädels exakt übereinstimmt und auch die gleichen für die Operation relevanten Materialeigenschaften aufweist, können Ärzte verschiedene Operationsverfahren realitätsnah testen.

Zugleich können sie sich mit den individuellen Besonderheiten des Schädels vertraut machen, dessen Wachstum korrigiert werden soll. Hier setzt ein neues Verbundprojekt an, das Dipl.-Biol. Daniel Seitz an der Universität Bayreuth koordiniert. Es wird von der neu gegündeten Friedrich Baur BioMed Center GmbH unter Leitung von Daniel Seitz und Prof. Dr. Stefan Schuster gefördert, die ihrerseits einen Kooperationsvertrag mit der Universität Bayreuth geschlossen hat und von der Friedrich Baur Stiftung in Burgkunstadt Fördermittel erhält.

Das Forschungsvorhaben zielt darauf ab, optimale informations- und steuerungstechnische Voraussetzungen für die Herstellung individueller Schädelmodelle zu entwickeln, die eine realitätsnahe Vorbereitung anspruchsvoller Operationen erlauben.

Partner in diesem Projekt sind PD Dr. Dr. Camilo Roldán, Mund-Kiefer-Gesichtschirurg am Katholischen Kinderkrankenhaus Wilhelmstift in Hamburg, und PD Dr. med. Jan Gliemroth, Neurochirurg am Universitätsklinikum Schleswig-Holstein in Lübeck. Beide Ärzte haben sich seit mehr als zehn Jahren einen Namen in der Kinderchirurgie gemacht und umfangreiche Erfahrungen mit operativen Eingriffen gesammelt, die Fehlbildungen von Schädeln ausgleichen. Sie wenden etablierte Verfahren an, die immer in Bezug auf den aktuellen Fall angepasst werden müssen und eine sorgfältige Planung erfordern.

"Wir freuen uns sehr, dass wir diese namhaften Spezialisten für eine enge Zusammenarbeit gewinnen konnten", erklärt Daniel Seitz, der das Projekt in Kooperation mit der Friedrich Baur-Stiftung auf den Weg gebracht hat. "So können aktuelle Erfahrungen aus der chirurgischen Praxis unmittelbar in das Design der benötigten Schädelmodelle einfließen."

Von der Computertomographie bis zum 3D-Druck

Es ist ein komplexes High-Tech-Verfahren, das in Bayreuth angewendet wird. Damit eine möglichst exakte 'Kopie' eines fehlgebildeten kindlichen Schädels erstellt werden kann, müssen zunächst computertomografische Aufnahmen angefertigt werden - mit einer für Kleinkinder besonders niedrigen Strahlenbelastung.

Diese CT-Daten werden mit einer speziellen Software so umgewandelt, dass sie am Rechner für die Konstruktion eines dreidimensionalen Schädelmodells genutzt werden können. Damit liegen aber noch längst nicht alle benötigten Daten vor: Einige Knochenregionen müssen in Rücksprache mit dem Arzt ergänzt werden, weil die Computertomografie nicht alle Schädelpartien mit der gleichen Präzision abbildet.

Darüber hinaus muss weiteres biologisch-medizinisches Wissen in die Modellierung einfließen. Denn auch das individuelle Krankheitsbild des Kindes, sein Alter sowie die voraussichtliche Entwicklung seiner Knochen sind bei der Konstruktion eines Modells zu beachten, das sich für die Vorbereitung einer Operation eignen soll.

Wenn Daniel Seitz zu dem Ergebnis kommt, dass alle relevanten Daten mit der erforderlichen Präzision berücksichtigt worden sind, gibt er das Modell frei. Die Konstruktionsdaten werden an ein Steuerungsprogramm übermittelt, das die Daten in kleinere 'Pakete' aufteilt und gleichsam scheibchenweise an einen besonderen 3D-Drucker schickt.

Diese Maschine druckt in ein Pulverbett, das aus einer besonderen Gipsmischung besteht, und erstellt so eine 1:1-Kopie der Schädelknochen des Patienten. "Wenn das Modell schließlich fertig ist, hat es eine ähnliche Konsistenz und Farbe wie echter Knochen - eine ideale Grundlage, um Operationen daran zu planen und zu üben", freut sich Daniel Seitz.

Operationserfolge ermutigen zu weiterer Forschung und Entwicklung

Dr. Camilo Roldán in Hamburg, der sich auf Schädel- und Gesichtsfehlbildungen spezialisiert hat, bestätigt diese Einschätzung: "Anhand der Modelle konnten wir aufwändige Operationen schneller und sicherer durchführen und teilweise sogar Verbesserungen in der Operationstechnik erarbeiten."

Mithilfe von Schädelmodellen, an denen gesägt und geschnitten werden kann, können komplizierte Eingriffe gründlicher vorbereitet und Operationsrisiken gesenkt werden. Halterungen und neuartige Osteosyntheseplatten, die bei der Korrektur von Schädelnähten verwendet und nach der Heilung resorbiert werden sollen, lassen sich an den Modellen realitätsnah erproben.

In Kooperation mit den chirurgischen Teams in Hamburg und Lübeck will Daniel Seitz die Techniken und Materialien, die bei der Modellierung und dem 3D-Druck der 'Test-Schädel' zum Einsatz kommen, weiter optimieren - mit dem Ziel, dass künftig eine größere Zahl von Kliniken die Chancen nutzt, die sich für eine bestmögliche Vorbereitung von Schädeloperationen bieten. Der Bayreuther Biologe leitet an der Universität Bayreuth eine Arbeitsgruppe für regenerative Medizin, die am Lehrstuhl für Tierphysiologie angesiedelt ist und mit der

Ansprechpartner: Dipl.-Biol. Daniel Seitz Lehrstuhl für Tierphysiologie AG Regenerative Medizin Universität Bayreuth Ludwig-Thoma-Str. 36c D-95447 Bayreuth Tel.: +49 (0)921 - 793 16 361 daniel.seitz@uni-bayreuth.de

Ansprechpartner für die Presse: Christian Wißler M.A. Wissenschaftskommunikation Pressestelle der Universität Bayreuth Universitätsstraße 30 D-95447 Bayreuth Telefon (+49) 0921 / 55-5356 E-Mail mediendienst-forschung@uni-bayreuth.de http://www.uni-bayreuth.de

Joachim Lepple | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

nachricht Cochlea-Implantat: Viele Formen funktionieren
10.08.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie