Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realistische Modelle erhöhen Erfolgschancen von Schädeloperationen

03.07.2014

Aufwändige chirurgische Eingriffe bei Kindern sind bereits erfolgreich verlaufen

Das Wachstum des Gehirns wird bei manchen Kindern dadurch gefährdet, dass Schädelnähte bereits in den ersten Lebensmonaten verknöchern. Der Schädel muss dann geöffnet und neu zusammengefügt werden.


Schädelkorrektur am Modell

Die Erfolgschancen eines derart sensiblen Eingriffs steigen, wenn Ärzte die notwendige Schädelkorrektur an einem Modell erproben können. Ein neues, an der Universität Bayreuth koordiniertes Verbundprojekt soll die Konstruktion und den 3D-Druck individueller Rapid Prototyping-Schädelmodelle optimieren.

Für eine gesunde Entwicklung von Kindern ist es entscheidend, dass ihre Schädelknochen dem Gehirn jederzeit genügend Platz für ein normales gesundes Wachstum bieten. Das Wachstum des Gehirns wird jedoch bei manchen Kindern dadurch gefährdet, dass Schädelnähte vorzeitig - also bereits in den ersten Lebensmonaten - verknöchern.

Diese so genannten Kraniosynostosen können bewirken, dass der Schädel nicht ausreichend flexibel ist, um dem sich entwickelnden Gehirn ausreichend Raum zu bieten. Der Schädel muss dann in den ersten Lebensmonaten geöffnet und neu zusammengefügt werden. Eine solche Operation verlangt den chirurgischen Teams ein hohes Maß an Sorgfalt und Präzision ab.

Enge Zusammenarbeit von Forschung und chirurgischer Praxis

Die Erfolgschancen eines derart sensiblen Eingriffs steigen, wenn Ärzte die notwendige Schädelkorrektur an einem Modell erproben können. Falls dieses mit der Form des kindlichen Schädels exakt übereinstimmt und auch die gleichen für die Operation relevanten Materialeigenschaften aufweist, können Ärzte verschiedene Operationsverfahren realitätsnah testen.

Zugleich können sie sich mit den individuellen Besonderheiten des Schädels vertraut machen, dessen Wachstum korrigiert werden soll. Hier setzt ein neues Verbundprojekt an, das Dipl.-Biol. Daniel Seitz an der Universität Bayreuth koordiniert. Es wird von der neu gegündeten Friedrich Baur BioMed Center GmbH unter Leitung von Daniel Seitz und Prof. Dr. Stefan Schuster gefördert, die ihrerseits einen Kooperationsvertrag mit der Universität Bayreuth geschlossen hat und von der Friedrich Baur Stiftung in Burgkunstadt Fördermittel erhält.

Das Forschungsvorhaben zielt darauf ab, optimale informations- und steuerungstechnische Voraussetzungen für die Herstellung individueller Schädelmodelle zu entwickeln, die eine realitätsnahe Vorbereitung anspruchsvoller Operationen erlauben.

Partner in diesem Projekt sind PD Dr. Dr. Camilo Roldán, Mund-Kiefer-Gesichtschirurg am Katholischen Kinderkrankenhaus Wilhelmstift in Hamburg, und PD Dr. med. Jan Gliemroth, Neurochirurg am Universitätsklinikum Schleswig-Holstein in Lübeck. Beide Ärzte haben sich seit mehr als zehn Jahren einen Namen in der Kinderchirurgie gemacht und umfangreiche Erfahrungen mit operativen Eingriffen gesammelt, die Fehlbildungen von Schädeln ausgleichen. Sie wenden etablierte Verfahren an, die immer in Bezug auf den aktuellen Fall angepasst werden müssen und eine sorgfältige Planung erfordern.

"Wir freuen uns sehr, dass wir diese namhaften Spezialisten für eine enge Zusammenarbeit gewinnen konnten", erklärt Daniel Seitz, der das Projekt in Kooperation mit der Friedrich Baur-Stiftung auf den Weg gebracht hat. "So können aktuelle Erfahrungen aus der chirurgischen Praxis unmittelbar in das Design der benötigten Schädelmodelle einfließen."

Von der Computertomographie bis zum 3D-Druck

Es ist ein komplexes High-Tech-Verfahren, das in Bayreuth angewendet wird. Damit eine möglichst exakte 'Kopie' eines fehlgebildeten kindlichen Schädels erstellt werden kann, müssen zunächst computertomografische Aufnahmen angefertigt werden - mit einer für Kleinkinder besonders niedrigen Strahlenbelastung.

Diese CT-Daten werden mit einer speziellen Software so umgewandelt, dass sie am Rechner für die Konstruktion eines dreidimensionalen Schädelmodells genutzt werden können. Damit liegen aber noch längst nicht alle benötigten Daten vor: Einige Knochenregionen müssen in Rücksprache mit dem Arzt ergänzt werden, weil die Computertomografie nicht alle Schädelpartien mit der gleichen Präzision abbildet.

Darüber hinaus muss weiteres biologisch-medizinisches Wissen in die Modellierung einfließen. Denn auch das individuelle Krankheitsbild des Kindes, sein Alter sowie die voraussichtliche Entwicklung seiner Knochen sind bei der Konstruktion eines Modells zu beachten, das sich für die Vorbereitung einer Operation eignen soll.

Wenn Daniel Seitz zu dem Ergebnis kommt, dass alle relevanten Daten mit der erforderlichen Präzision berücksichtigt worden sind, gibt er das Modell frei. Die Konstruktionsdaten werden an ein Steuerungsprogramm übermittelt, das die Daten in kleinere 'Pakete' aufteilt und gleichsam scheibchenweise an einen besonderen 3D-Drucker schickt.

Diese Maschine druckt in ein Pulverbett, das aus einer besonderen Gipsmischung besteht, und erstellt so eine 1:1-Kopie der Schädelknochen des Patienten. "Wenn das Modell schließlich fertig ist, hat es eine ähnliche Konsistenz und Farbe wie echter Knochen - eine ideale Grundlage, um Operationen daran zu planen und zu üben", freut sich Daniel Seitz.

Operationserfolge ermutigen zu weiterer Forschung und Entwicklung

Dr. Camilo Roldán in Hamburg, der sich auf Schädel- und Gesichtsfehlbildungen spezialisiert hat, bestätigt diese Einschätzung: "Anhand der Modelle konnten wir aufwändige Operationen schneller und sicherer durchführen und teilweise sogar Verbesserungen in der Operationstechnik erarbeiten."

Mithilfe von Schädelmodellen, an denen gesägt und geschnitten werden kann, können komplizierte Eingriffe gründlicher vorbereitet und Operationsrisiken gesenkt werden. Halterungen und neuartige Osteosyntheseplatten, die bei der Korrektur von Schädelnähten verwendet und nach der Heilung resorbiert werden sollen, lassen sich an den Modellen realitätsnah erproben.

In Kooperation mit den chirurgischen Teams in Hamburg und Lübeck will Daniel Seitz die Techniken und Materialien, die bei der Modellierung und dem 3D-Druck der 'Test-Schädel' zum Einsatz kommen, weiter optimieren - mit dem Ziel, dass künftig eine größere Zahl von Kliniken die Chancen nutzt, die sich für eine bestmögliche Vorbereitung von Schädeloperationen bieten. Der Bayreuther Biologe leitet an der Universität Bayreuth eine Arbeitsgruppe für regenerative Medizin, die am Lehrstuhl für Tierphysiologie angesiedelt ist und mit der

Ansprechpartner: Dipl.-Biol. Daniel Seitz Lehrstuhl für Tierphysiologie AG Regenerative Medizin Universität Bayreuth Ludwig-Thoma-Str. 36c D-95447 Bayreuth Tel.: +49 (0)921 - 793 16 361 daniel.seitz@uni-bayreuth.de

Ansprechpartner für die Presse: Christian Wißler M.A. Wissenschaftskommunikation Pressestelle der Universität Bayreuth Universitätsstraße 30 D-95447 Bayreuth Telefon (+49) 0921 / 55-5356 E-Mail mediendienst-forschung@uni-bayreuth.de http://www.uni-bayreuth.de

Joachim Lepple | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise