Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rapid Detection of Malaria

21.11.2012
The Department of Microsystems Engineering of the University of Freiburg is Coordinating the Research Project DiscoGnosis

An estimated 220 million people become infected with malaria each year. The disease is often lethal – particularly in tropical developing countries with insufficient health care services.


source: IMTEK/Bernd Müller

The infected suffer from a high fever. As this is also the case with other germs, however, it is important to conduct a rapid and precise analysis to determine the cause of the disease for a successful therapy. A team of researchers aims to develop a rapid test of this kind within the context of the project DiscoGnosis.

Launched in November 2012, the project will receive three million euros in funding from the European Union and is being coordinated by the Department of Microsystems Engineering (IMTEK) of the University of Freiburg.

DiscoGnosis stands for “disc-shaped point-of-care platform for infectious disease diagnosis” – a device that looks similar to a DVD player. Its purpose will be to purify patients’ blood samples and detect all relevant fever-causing germs in a single step. The institutions responsible for the project want to develop an inexpensive method for determining whether a person with fever has malaria or not. Studies have shown that 30 to 40 percent of patients being treated for malaria are actually suffering from typhus or dengue fever.

Each disc will be intended for one use only and will be capable of making a reliable diagnosis automatically with the help of integrated biochemical analytical processes. The innovation thus has the potential to bring modern diagnostics to countries and regions with poor infrastructure and improve the health care of entire populations. Ultimately, it could serve as a shield to stop the spread of malaria in Europe, which is currently being exacerbated by climate change.

IMTEK’s partners in the consortium are the University Medical Center Göttingen, the University Hospital Basel, Switzerland, the Swiss tool technology and engineering company Rohrer AG, the biotechnology companies MagnaMedics Diagnostics BV from the Netherlands and MAST Group Ltd. from Great Britain, and the European Foundation for Clinical Nanomedicine.

Further Information:
www.pr.uni-freiburg.de/go/discognosis
Contact:
Dr. Konstantinos Mitsakakis
Project Coordinator
Department of Microsystems Engineering, Laboratory for MEMS Applications
University of Freiburg
Phone: +49 (0)761/203-73252
E-Mail: konstantinos.mitsakakis@imtek.uni-freiburg.de
Katrin Grötzinger
PR & Marketing
Department of Microsystems Engineering
University of Freiburg
Phone: +49 (0)761/203-73242
E-Mail: katrin.groetzinger@imtek.uni-freiburg.de

Melanie Hübner | University of Freiburg
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/discognosis

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie