Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prostatakrebs schnell und sicher diagnostizieren

28.10.2014

Zwischen gut- und bösartig verändertem Prostatagewebe zu unterscheiden, ist schwierig.

Ein neues Gerät erleichtert Ärzten die Diagnose: Über eine optische Analyse können sie innerhalb von eineinhalb Minuten zuverlässig sagen, ob es sich um ein Karzinom handelt. Auf der Messe COMPAMED vom 12. bis 14. November in Düsseldorf stellen Fraunhofer-Forscher den Prototyp vor.


In nur eineinhalb Minuten ermittelt dieser Prototyp eines Diagnosegeräts, ob die Gewebeprobe der Prostata gut- oder bösartig ist. © Fraunhofer IKTS


Die Software zeigt an, dass das Gewebe karzinomfrei ist. © Fraunhofer IKTS

Handelt es sich um ein Karzinom in der Prostata – oder um eine gutartige Gewebeveränderung?

Um dies herauszufinden, entnehmen Ärzte dem Patienten über eine Biopsie Prostatagewebe. Dabei führen sie eine kleine Nadel in die Prostata ein, Ultraschallbilder helfen bei der Navigation.

Labormitarbeiter fertigen aus der so entnommenen Probe hauchdünne Gewebeschnitte an – eine mühselige Arbeit, die mindestens einen Tag dauert. Anschließend werden die Gewebeschnitte an einen Pathologen weitergereicht, der sie unter dem Mikroskop untersucht. Allerdings ist es auch für erfahrene Ärzte oftmals schwierig, zwischen gut- und bösartig verändertem Gewebe zu unterscheiden.

Analyse auf Knopfdruck

Künftig geht diese Untersuchung einfacher, schneller und präziser: mit einem optischen Diagnosegerät, das Forscher am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden entwickelt haben. Es liegt derzeit als Prototyp vor.

»Der Arzt legt die entnommene Gewebeprobe auf ein Unterlageplättchen, schiebt dieses in das Gerät, drückt einen Knopf – und erhält innerhalb von eineinhalb Minuten eine zuverlässige Aussage, ob das Gewebe in der Probe gut- oder bösartig verändert ist«, beschreibt Dr. Jörg Opitz, Wissenschaftler am IKTS.

Da die Probe nicht langwierig aufbereitet werden muss, sondern direkt nach der Entnahme ins Gerät geschoben und analysiert werden kann, braucht der Patient nach der Biopsie nicht tagelang auf das Ergebnis zu warten. Der Arzt bekommt das Resultat umgehend und kann wesentlich schneller mit dem Patienten die weiteren Schritte besprechen.

Licht regt die körpereigene Fluoreszenz an

Ein weiterer Vorteil liegt in der Zuverlässigkeit der Untersuchungen. »Die Analysen basieren auf der Auto-Fluoreszenz, die humanes Gewebe abgibt«, sagt Opitz. Denn in jedem menschlichen Körper fi nden sich Fluorophore. Diese Moleküle leuchten eine sehr kurze Zeit, wenn bestimmtes Licht auf sie fällt.

Legt der Arzt das entnommene Gewebe in das Gerät und startet die Messung, strahlt ein dosierter Laserpuls darauf und regt die Fluorophore an: Die fl uoreszierenden Moleküle im Gewebe geben durch diesen Laserpuls ihrerseits Licht ab. Wie diese Fluoreszenzstrahlung abnimmt, unterscheidet sich bei gut- und bösartig verändertem Gewebe.

Dabei konnten die Wissenschaftler einen klaren Schwellwert für dieses unterschiedliche Verhalten bestimmen: Überschreitet der Wert der Gewebeprobe den Schwellwert, handelt es sich um ein Karzinom. Die Ärzte erhalten also eine klare Aussage. Die Auswertung läuft automatisch. Das Gerät zeigt dem Mediziner in Form von Ampelfarben an, ob die entnommene Probe Krebsgewebe enthält.

Jedes Gewebe hat einen eigenen Schwellwert

Momentan lässt sich das Gerät nur für Prostatakarzinome einsetzen. Denn der Schwellwert, auf den sich das Gerät bezieht, gilt nur für dieses Gewebe. Für jede Gewebeart gibt es einen solchen fi xen Wert, allerdings sind sie unterschiedlich. Gewebe der Prostata hat einen anderen als solches aus der Brust oder der Mundhöhle. Ziel der Forscher ist es, die Schwellwerte für andere Gewebearten zu bestimmen und diese in die Auswertesoftware des Geräts zu integrieren. Dann könnten die Ärzte mit dem Gerät verschiedene Proben untersuchen: Sie müssten lediglich über ein Drop-Down-Menü den entsprechenden Gewebetyp eingeben.

Die ersten zwei klinischen Studien hat das optische Diagnosegerät bereits erfolgreich hinter sich, momentan läuft die dritte Studie. Den 53 mal 60 mal 43 Zentimeter großen Prototypen stellen die Wissenschaftler auf der Messe COMPAMED vom 12. bis 14. November in Düsseldorf vor (Halle 8a, Stand K38).

Kontakt

Dr. rer. nat. Jörg Opitz
Fraunhofer-Institut für Keramische Technologien und Systeme, Institutsteil Materialdiagnostik IKTS-MD
Telefon +49 351 88815-516
joerg.opitz@ikts.fraunhofer.de

Weitere Informationen:

http://www.ikts.fraunhofer.de

Katrin Schwarz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

nachricht Cochlea-Implantat: Viele Formen funktionieren
10.08.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik