Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proben ins rechte Licht gerückt:

01.06.2009
Nanopositioniersysteme in der Fluoreszenz-Mikroskopie

Die Wurzeln der Mikroskopie reichen bis ins 16. Jahrhundert zurück und ihre Weiterentwicklung wurde seitdem von zahlreichen Wissenschaftlern unterschiedlichster Nationalitäten stetig vorangetrieben. Mit den Vergrößerungsgläsern der Anfangszeit haben moderne Hochleistungs-Mikroskope deshalb nur noch wenig gemein. Mit Hilfe moderner Fluoreszenz-Mikroskope beispielsweise sind mittlerweile sogar Untersuchungen an einzelnen Molekülen möglich. Zum technischen Fortschritt in der Mikroskopie tragen viele Technikbereiche bei. Dazu gehört auch die Antriebstechnik. Mit präzisen und hochdynamischen Nanopositioniersystemen lassen sich heute die Proben auf wenige Nanometer genau ins "rechte Licht" rücken.

Einzelmolekül-Untersuchungen sind für unterschiedliche Forschungseinrichtungen interessant, da sich mit ihrer Hilfe viele Informationen über chemische Eigenschaften oder biologische Funktionen gewinnen lassen. Die Detektion einzelner Moleküle ist allerdings alles andere als einfach. So wird sie beispielsweise immer durch den Einfluss des umgebenden Mediums erschwert. Zur Erhöhung des Signal-Rausch-Verhältnisses nutzt man deshalb die sehr sensitive laserbasierte Fluoreszenz-Untersuchung (vgl. Kastentext 1) und ausgewählte Fluorophore. Neben der Messung der reinen Fluoreszenz-Intensität hat sich heute auch die Messung der Fluoreszenz-Lebensdauer als wichtiger Parameter etabliert. Sie eignet sich besonders für quantitative Messungen. Wurden entsprechende Apparaturen bis vor einigen Jahren fast ausschließlich von Forschungsgruppen selbst konstruiert, so sind heute kompakte Geräte auf dem Markt, die eine zeitaufgelöste und bildgebende Detektion einzelner Moleküle ermöglichen und aufgrund umfangreicher Software viele der mathematisch komplexen Analysemethoden direkt unterstützen.

Konfokales Mikroskop mit Einzelmolekül-Empfindlichkeit

Das zurzeit in solchen Fällen am häufigsten eingesetzte Gerät ist das konfokale, zeitaufgelöste Fluoreszenz-Mikroskop MicroTime 200, das von PicoQuant, Berlin, entwickelt wurde (Bild 1). "Dieses System nutzt zur Datenaufnahme die zeitkorrelierte Einzelphotonenzählung und ermöglicht sowohl 2D- als auch 3D-Aufnahmen", erläutert Dr. Felix Koberling (Bild 2), Leiter der Systementwicklung bei PicoQuant. "Zusammen mit den Kurzpuls-Diodenlasern und den eingesetzten Einzelphotonen-Detektoren ermöglicht diese spezielle Datenaufnahme eine extrem hohe Sensitivität und Zeitauflösung."
Dadurch lassen sich eine Vielzahl der heute in der Fluoreszenz-Mikroskopie üblichen Verfahren realisieren (Bild 3), z.B. neben FCS (Fluorescence Correlation Spectroscopy) und FRET (Fluorescence Resonance Energy Transfer) auch das so genannte Fluorescence Lifetime Imaging (FLIM, Bild 4 und 5), bei dem man nicht nur die gemessene Intensität nutzt, sondern zusätzlich auch die jeweilige Fluoreszenz-Lebensdauer zur Visualisierung und Quantifizierung, beispielsweise um intrazelluläre Prozesse auch in lebenden Zellen zu analysieren. Durch den modularen Aufbau lässt sich das Fluoreszenz-Mikroskop außerdem sehr flexibel an unterschiedliche Aufgabenstellungen anpassen.

Die prinzipielle Funktionsweise des konfokalen Fluoreszenz-Mikroskops ist dabei einfach zu verstehen: Für zweidimensionale Aufnahmen wird die Probe zeilenweise abgerastert. Typische Formate dieses Rasterscans liegen je nach Anwendung zwischen 150 x 150 und 512 x 512 Pixeln. Dabei wird normalerweise die Probe bewegt, Laserstrahl und Focus bleiben fest.

Höchste Wiederholgenauigkeit durch dynamische digitale Linearisierung
Für den Antrieb des Scannertischs fiel die Wahl schließlich auf ein piezobasiertes Nanopositionsystem (Bild 6) von Physik Instrumente (PI), Karlsruhe (vgl. Kastentext 2). Es arbeitet mit Wiederholgenauigkeiten im Nanometerbereich bei Ansprechzeiten unterhalb einer Millisekunde und passt mit einem Stellweg von 100 x 100 µm perfekt für die Anforderungen der Fluoreszenz-Mikroskopie. Da das System sehr kompakt baut, ließ es sich auch gut in den Mikroskop-Tisch integrieren. Falls die Probe nicht bewegt werden kann, lässt sich das gleiche Positioniersystem auch so anbringen, dass es das Mikroskop-Objektiv bewegt. Ein solches "Objektiv-Scanning" empfiehlt sich beispielsweise für temperierte Proben in einer geschlossenen Mikro-Klimakammer oder in einem Kryostaten. Außerdem sind so bei der Probe bewegungsbedingte Störungen ausgeschlossen.

In jedem Fall sorgen die in das Positioniersystem integrierten hochpräzisen kapazitiven Sensoren für die genaue Istwert-Erfassung, die notwendig ist, um eine möglichst hohe Wiederholgenauigkeit zu erreichen. "Typischerweise fährt man nach der ersten Bildaufnahme eines Probenbereichs dann in einem zweiten Schritt einzelne Positionen punktuell an, an denen sich besonders interessante Objekte befinden", erklärt Koberling. "Während des dynamischen Scans der Probe müssen also Ist- und Sollwert möglichst genau übereinstimmen, um die Position zuverlässig wiederfinden zu können." Dies ermöglicht die Digitalsteuerung des eingesetzten Positioniersystems durch ihre so genannte DDL-Funktion. Mit dieser dynamischen digitalen Linearisierung lässt sich die Scanlinearität um bis zu drei Größenordnungen verbessern. Phasenverschiebungen und Bahnabweichungen reduzieren sich dadurch auf praktisch nicht wahrnehmbare Werte (Bild 7a, b). Dazu wird mit Hilfe des integrierten Wegsensors des Piezoantriebs die Ansteuerung für den Antrieb entsprechend angepasst. "Bei unserem MicroTime 200 können wird dadurch je nach Einsatzbereich Reproduziergenauigkeiten besser als 10 nm für Punktmessungen garantieren", ergänzt Koberling. Auch in puncto Geschwindigkeit lässt das Nanopositioniersystem keine Wünsche offen. "Eine 2D-Aufnahme dauert normalerweise lediglich 10 bis 100 s. Die Werte hängen natürlich immer von der jeweiligen Anwendung und damit der Anzahl der Scanpunkte und der Intensität der Fluoreszenz ab", so Koberling weiter.

Die dritte Dimension: zusätzliche Fokus-Justierung

Für dreidimensionale Aufnahmen ist zusätzlich eine dynamische und präzise Fokus-Justierung in Richtung der optischen Achse erforderlich. Auch hierfür bieten piezobasierte Antriebssysteme ideale Voraussetzungen. Die Z-Antriebe (Bild 8), die PI speziell für das Objektiv im Programm hat, können sehr klein und steif gebaut werden. Sie reagieren dadurch mit kurzen Ansprechzeiten und positionieren durch die Verwendung von Festkörperführungen auch bei verhältnismäßig großen Verfahrwegen sehr genau. Die in dem Berliner Fluoreszenz-Mikroskop für 3D-Aufnahmen eingesetzte Ausführung arbeitet mit einem maximalen Verstellweg von 100 µm und ließ sich gut in die Applikation integrieren. Mit einem Schnellverschlussadapter wird es einfach zwischen Revolver und Objekt angebracht. Auch dieses Antriebssystem ist zur Positionserfassung mit hochgenauen kapazitiven Sensoren ausgestattet und garantiert Reproduzierbarkeiten im Nanometerbereich. "Die piezobasierten Nanopositioniersysteme tragen damit entscheidend dazu bei, dass wir mit unserem MicroTime 200 qualitativ sehr hochwertige Ergebnisse erzielen können", so Koberling abschließend.

Dipl.-Phys. Steffen Arnold*) und M.A. Ellen-Christine Reiff**) | LABO
Weitere Informationen:
http://www.labo.de/xist4c/web/Proben-ins--rechte-Licht-gerueckt-_id_510__dId_431770_.htm
http://www.physikinstrumente.de
http://www.picoquant.com

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie