Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proben ins rechte Licht gerückt:

01.06.2009
Nanopositioniersysteme in der Fluoreszenz-Mikroskopie

Die Wurzeln der Mikroskopie reichen bis ins 16. Jahrhundert zurück und ihre Weiterentwicklung wurde seitdem von zahlreichen Wissenschaftlern unterschiedlichster Nationalitäten stetig vorangetrieben. Mit den Vergrößerungsgläsern der Anfangszeit haben moderne Hochleistungs-Mikroskope deshalb nur noch wenig gemein. Mit Hilfe moderner Fluoreszenz-Mikroskope beispielsweise sind mittlerweile sogar Untersuchungen an einzelnen Molekülen möglich. Zum technischen Fortschritt in der Mikroskopie tragen viele Technikbereiche bei. Dazu gehört auch die Antriebstechnik. Mit präzisen und hochdynamischen Nanopositioniersystemen lassen sich heute die Proben auf wenige Nanometer genau ins "rechte Licht" rücken.

Einzelmolekül-Untersuchungen sind für unterschiedliche Forschungseinrichtungen interessant, da sich mit ihrer Hilfe viele Informationen über chemische Eigenschaften oder biologische Funktionen gewinnen lassen. Die Detektion einzelner Moleküle ist allerdings alles andere als einfach. So wird sie beispielsweise immer durch den Einfluss des umgebenden Mediums erschwert. Zur Erhöhung des Signal-Rausch-Verhältnisses nutzt man deshalb die sehr sensitive laserbasierte Fluoreszenz-Untersuchung (vgl. Kastentext 1) und ausgewählte Fluorophore. Neben der Messung der reinen Fluoreszenz-Intensität hat sich heute auch die Messung der Fluoreszenz-Lebensdauer als wichtiger Parameter etabliert. Sie eignet sich besonders für quantitative Messungen. Wurden entsprechende Apparaturen bis vor einigen Jahren fast ausschließlich von Forschungsgruppen selbst konstruiert, so sind heute kompakte Geräte auf dem Markt, die eine zeitaufgelöste und bildgebende Detektion einzelner Moleküle ermöglichen und aufgrund umfangreicher Software viele der mathematisch komplexen Analysemethoden direkt unterstützen.

Konfokales Mikroskop mit Einzelmolekül-Empfindlichkeit

Das zurzeit in solchen Fällen am häufigsten eingesetzte Gerät ist das konfokale, zeitaufgelöste Fluoreszenz-Mikroskop MicroTime 200, das von PicoQuant, Berlin, entwickelt wurde (Bild 1). "Dieses System nutzt zur Datenaufnahme die zeitkorrelierte Einzelphotonenzählung und ermöglicht sowohl 2D- als auch 3D-Aufnahmen", erläutert Dr. Felix Koberling (Bild 2), Leiter der Systementwicklung bei PicoQuant. "Zusammen mit den Kurzpuls-Diodenlasern und den eingesetzten Einzelphotonen-Detektoren ermöglicht diese spezielle Datenaufnahme eine extrem hohe Sensitivität und Zeitauflösung."
Dadurch lassen sich eine Vielzahl der heute in der Fluoreszenz-Mikroskopie üblichen Verfahren realisieren (Bild 3), z.B. neben FCS (Fluorescence Correlation Spectroscopy) und FRET (Fluorescence Resonance Energy Transfer) auch das so genannte Fluorescence Lifetime Imaging (FLIM, Bild 4 und 5), bei dem man nicht nur die gemessene Intensität nutzt, sondern zusätzlich auch die jeweilige Fluoreszenz-Lebensdauer zur Visualisierung und Quantifizierung, beispielsweise um intrazelluläre Prozesse auch in lebenden Zellen zu analysieren. Durch den modularen Aufbau lässt sich das Fluoreszenz-Mikroskop außerdem sehr flexibel an unterschiedliche Aufgabenstellungen anpassen.

Die prinzipielle Funktionsweise des konfokalen Fluoreszenz-Mikroskops ist dabei einfach zu verstehen: Für zweidimensionale Aufnahmen wird die Probe zeilenweise abgerastert. Typische Formate dieses Rasterscans liegen je nach Anwendung zwischen 150 x 150 und 512 x 512 Pixeln. Dabei wird normalerweise die Probe bewegt, Laserstrahl und Focus bleiben fest.

Höchste Wiederholgenauigkeit durch dynamische digitale Linearisierung
Für den Antrieb des Scannertischs fiel die Wahl schließlich auf ein piezobasiertes Nanopositionsystem (Bild 6) von Physik Instrumente (PI), Karlsruhe (vgl. Kastentext 2). Es arbeitet mit Wiederholgenauigkeiten im Nanometerbereich bei Ansprechzeiten unterhalb einer Millisekunde und passt mit einem Stellweg von 100 x 100 µm perfekt für die Anforderungen der Fluoreszenz-Mikroskopie. Da das System sehr kompakt baut, ließ es sich auch gut in den Mikroskop-Tisch integrieren. Falls die Probe nicht bewegt werden kann, lässt sich das gleiche Positioniersystem auch so anbringen, dass es das Mikroskop-Objektiv bewegt. Ein solches "Objektiv-Scanning" empfiehlt sich beispielsweise für temperierte Proben in einer geschlossenen Mikro-Klimakammer oder in einem Kryostaten. Außerdem sind so bei der Probe bewegungsbedingte Störungen ausgeschlossen.

In jedem Fall sorgen die in das Positioniersystem integrierten hochpräzisen kapazitiven Sensoren für die genaue Istwert-Erfassung, die notwendig ist, um eine möglichst hohe Wiederholgenauigkeit zu erreichen. "Typischerweise fährt man nach der ersten Bildaufnahme eines Probenbereichs dann in einem zweiten Schritt einzelne Positionen punktuell an, an denen sich besonders interessante Objekte befinden", erklärt Koberling. "Während des dynamischen Scans der Probe müssen also Ist- und Sollwert möglichst genau übereinstimmen, um die Position zuverlässig wiederfinden zu können." Dies ermöglicht die Digitalsteuerung des eingesetzten Positioniersystems durch ihre so genannte DDL-Funktion. Mit dieser dynamischen digitalen Linearisierung lässt sich die Scanlinearität um bis zu drei Größenordnungen verbessern. Phasenverschiebungen und Bahnabweichungen reduzieren sich dadurch auf praktisch nicht wahrnehmbare Werte (Bild 7a, b). Dazu wird mit Hilfe des integrierten Wegsensors des Piezoantriebs die Ansteuerung für den Antrieb entsprechend angepasst. "Bei unserem MicroTime 200 können wird dadurch je nach Einsatzbereich Reproduziergenauigkeiten besser als 10 nm für Punktmessungen garantieren", ergänzt Koberling. Auch in puncto Geschwindigkeit lässt das Nanopositioniersystem keine Wünsche offen. "Eine 2D-Aufnahme dauert normalerweise lediglich 10 bis 100 s. Die Werte hängen natürlich immer von der jeweiligen Anwendung und damit der Anzahl der Scanpunkte und der Intensität der Fluoreszenz ab", so Koberling weiter.

Die dritte Dimension: zusätzliche Fokus-Justierung

Für dreidimensionale Aufnahmen ist zusätzlich eine dynamische und präzise Fokus-Justierung in Richtung der optischen Achse erforderlich. Auch hierfür bieten piezobasierte Antriebssysteme ideale Voraussetzungen. Die Z-Antriebe (Bild 8), die PI speziell für das Objektiv im Programm hat, können sehr klein und steif gebaut werden. Sie reagieren dadurch mit kurzen Ansprechzeiten und positionieren durch die Verwendung von Festkörperführungen auch bei verhältnismäßig großen Verfahrwegen sehr genau. Die in dem Berliner Fluoreszenz-Mikroskop für 3D-Aufnahmen eingesetzte Ausführung arbeitet mit einem maximalen Verstellweg von 100 µm und ließ sich gut in die Applikation integrieren. Mit einem Schnellverschlussadapter wird es einfach zwischen Revolver und Objekt angebracht. Auch dieses Antriebssystem ist zur Positionserfassung mit hochgenauen kapazitiven Sensoren ausgestattet und garantiert Reproduzierbarkeiten im Nanometerbereich. "Die piezobasierten Nanopositioniersysteme tragen damit entscheidend dazu bei, dass wir mit unserem MicroTime 200 qualitativ sehr hochwertige Ergebnisse erzielen können", so Koberling abschließend.

Dipl.-Phys. Steffen Arnold*) und M.A. Ellen-Christine Reiff**) | LABO
Weitere Informationen:
http://www.labo.de/xist4c/web/Proben-ins--rechte-Licht-gerueckt-_id_510__dId_431770_.htm
http://www.physikinstrumente.de
http://www.picoquant.com

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Deutschlandweit erstes Gerät für hoch fokussierten Ultraschall bei Tremor und Parkinson
11.04.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Nuklearmedizinische Herzuntersuchungen – Neue Techniken, größere Präzision
09.04.2018 | Deutsche Gesellschaft für Nuklearmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics