Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren macht Operationen am Gehirn sicherer

31.05.2011
Wenn es darum geht, die Sicherheit von Patienten in der klinischen Praxis zu erhöhen und Risiken und Schädigungen, die beispielsweise durch Operationen entstehen können, zu minimieren, sind Computerunterstützung und digitale medizinische Bildgebung Schlüsseltechnologien.

Jetzt können Neurochirurgen bereits vor einer Operation am Gehirn die Risiken eines Eingriffs patientenindividuell bewerten und eine erhöhte Sicherheit erhalten, Risiken, die nicht in Kauf genommen werden dürfen, zu vermeiden.

Ein Eingriff am Gehirn muss so geplant werden, dass der Neurochirurg zum Tumor vordringen und ihn entfernen kann, ohne dabei unnötigen Schaden anzurichten. Bevor der Hirntumor entfernt werden kann, müssen wichtige Fragen beantwortet werden: Wo genau liegen bei dem betroffenen Patienten die Funktionsareale der Hirnrinde, der grauen Substanz, und wie verlaufen die sie verbindenden Nervenfaserbahnen? Denn die Funktionsareale sind über Leitungsbahnen, den sogenannten Nervenfaserbahnen, miteinander verbunden. Diese Faserbahnen müssen weitestgehend geschützt werden, ansonsten kann es zu bleibenden Funktionsausfällen kommen.

Hinzu kommt, dass diese Bahnen durch den Hirntumor verdrängt oder infiltriert werden können. Wenn die Faserbahnen bei der Operation verletzt werden, besteht die Gefahr auch entfernte Funktionsgebiete, die über diese Bahnen mit dem vom Tumor befallen Bereich verbunden sind, zu beeinträchtigen und bleibende sensorische, motorische oder kognitive Schäden zu verursachen. Neurochirurgen möchten deshalb die Antworten auf die Fragen individuell für jeden Patienten vorab in die Planungen einer Hirnoperation mit einbeziehen, um dadurch die Risiken des Eingriffs zu minimieren. Dafür benötigen sie medizinische Bilddaten, die die Anatomie und Funktion des Gehirns für jeden Patienten so realitätsnah und präzise wie möglich abbilden. Diese auf Messdaten basierten Bilder bergen ihrerseits Ungenauigkeiten, wie auch die Aufbereitung der Patientendaten, ihre Modellierung und Rekonstruktion.

Um diese Probleme zu lösen reicht eine Verbesserung der bildgebenden Verfahren allein nicht aus. Mathematische Analysen und Modelle müssen hinzugezogen werden, um präzise Informationen über die Lage des Tumors, der Funktionsgebiete, der Faserbahnen und auch hinsichtlich der Genauigkeit dieser Daten patientenindividuell aufzubereiten und dem Operateur als belastbares Wissen zur Seit zu stellen.

Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen hat ein richtungsweisendes neues Verfahren entwickelt, das die Unsicherheiten der Bildgebung, der Modellierung und der Rekonstruktion individuell analysiert und bei der Rekonstruktion der Patientendaten mit berücksichtigt. Das Verfahren ermöglicht es, einen Sicherheitsabstand um die Nervenfaserbahnen im Gehirn exakt zu bestimmen. Zusätzlich wird die Zuverlässigkeit der rekonstruierten Daten ermittelt, um so dem Operateur genaue Informationen über die Lage und den Verlauf sowie mögliche Kreuzungen der Faserbahnen zu geben und Sicherheitsabstände um die Nervenbahnen mit zu konstruieren.

Unter Einbeziehung der Mess-, Rekonstruktions- und Modellierungsfehler wird die genaue örtliche Verlagerung der Faserbahnen durch den raumfordernden Tumor berechnet. So wird dem Neurochirurgen eine verlässliche Prognose darüber gegeben, über welchen Zugangsweg und wie weit der Tumor und ein zusätzlicher Sicherheitssaum herausgeschnitten werden dürfen, ohne Nervenfaserbahnen zu verletzen und ohne dabei wichtige Funktionsgebiete irreversibel zu schädigen. Der Chirurg kann bereits vor dem Eingriff diese Risiken patientenindividuell bewerten. Die Software-Assistenten werden weiterentwickelt und zukünftig auch in der Neuronavigation während einer OP eingesetzt, so dass der Chirurg während einer Operation mit aktuellen Daten versorgt wird und diese mit den Planungsdaten abgleichen kann.

Wie die Nervenfaserbahnen im Gehirn verlaufen und welche Funktionsareale sie verbinden, können jetzt Besucher der Ausstellung an einem Exponat in der Ausstellung ”Neue Wege in der Medizin“ auf dem Ausstellungsschiff „MS-Wissenschaft“ erkunden. Das umgebaute Binnenfrachtschiff ist vom 19. Mai bis zum 29. September 2011 unterwegs und geht in 35 Städten vor Anker. Im Jahr der Gesundheitsforschung können sich die Besucher über die neuesten Trends, Entwicklungen und Forschungsergebnisse informieren. Das Exponat zeigt ein mit einem neuartigen Druckverfahren hergestelltes dreidimensionales Modell eines Gehirns, das auf realen medizinischen Bilddaten eines Menschen basiert. Dieses Gehirnmodell kann angefasst und über einen Drehteller aus verschiedenen Richtungen betrachtet werden. Über auf den Funktionsarealen des Gehirns angebrachte Sensoren können Nervenfaserbahnen im Gehirn aktiviert werden. Auf einem Bildschirm wird das Gehirn von innen mit den aktivierten Faserbahnen dargestellt und gezeigt, welche Faserbündel spezielle Funktionsareale im Gehirn verbinden, die zum Beispiel für das Sehen, die Sprache, das Fühlen oder die Bewegung zuständig sind. Diese neue Form der interaktiven Darstellung wurde von Fraunhofer MEVIS in Bremen zusammen mit dem Universum Science Center Bremen entwickelt, um zu zeigen, wie moderne bildgebende Verfahren in Verbindung mit Mathematik und intelligenter Software dabei helfen, neurochirurgische Operationen für Patienten individuell planbar und sicherer zu machen. Der dreidimensionale Ausdruck des Gehirns wurde vom Fraunhofer-Institut für Techno- und Wirtschaftsmatheamtik ITWM in Kaiserslautern realisiert.

Zum Hintergrund:
Seit 1995 ist Fraunhofer MEVIS Vorreiter in der Forschung und Entwicklung auf dem Gebiet der Computerunterstützung in der bildbasierten, personalisierten Medizin. Ein wichtiges Arbeitsgebiet ist dabei die Risikominimierung bei der Planung und Durchführung von chirurgischen Eingriffen. Die Forscher entwickeln mathematische Modelle, die Strukturen des menschlichen Körpers, wie beispielsweise einen Lebergefäßbaum oder das Bronchialsystem in der Lunge mathematisch beschreiben. Diese Informationen werden patientenindividuell aufbereitet und für Prognosen genutzt, wie weit beispielsweise ein Tumor und ein zusätzlicher Sicherheitssaum entfernt werden dürfen und wo Sicherheitsabstände einzuhalten sind, um wichtige Strukturen zu schützen. Anhand eines bis ins Detail rekonstruierten patientenindividuellen Organmodells können Chirurgen die Risiken einer Operation bereits vor dem chirurgischen Eingriff einschätzen und das optimale Vorgehen planen. Mit weltweit mehr als 100 klinischen Partnern und über 5.500 aufbereiteten Fällen aus der klinischen Praxis allein in der Leberoperationsplanung greift Fraunhofer MEVIS hier auf eine umfangreiche Erfahrung in der chirurgischen OP-Planung und den klinischen Abläufen zurück. Erweitert wurden diese Verfahren um ein Navigationssystem, bei dem während einer Leber-Operation Ultraschalldaten aufgenommen und mit den Planungsdaten in Übereinstimmung gebracht werden. So können während einer Operation neue Informationen gewonnen und zu den Planungsdaten hinzufügt werden.

Mit Hilfe des belastbaren Wissens, das der Operateur aus den Rekonstruktionen und Analysen erhält, muss er nicht mehr nur auf seine Erfahrungen – sein implizites Wissen – zurückgreifen. Gute und erfahrene Operateure können mit großer Zuverlässigkeit einen Eingriff vornehmen und erkennen Risiken ohne explizit alle Regeln angeben zu können, nach denen sie bei der Operation vorgegangen sind oder warum sie einen üblichen Weg verlassen haben und gleichsam intuitiv anders vorgegangen sind. Weniger erfahrenen Ärzten fehlt dieses Wissen. Mit Hilfe der Software-Assistenten von Fraunhofer MEVIS können auch weniger erfahrene Chirurgen mit diesem Wissen sicherer arbeiten. Für den einzelnen Patienten ist dies von Bedeutung, aber auch für die Qualität der Versorgung in der Breite. Dank der neuen Verfahren und Software-Assistenten, die Fraunhofer MEVIS entwickelt, kann nicht nur die Qualität in den großen Kliniken in den Städten verbessert werden, sondern auch in ländlichen Regionen.

Ansprechpartner:
Dr. Guido Prause
Telefon 0421 218-59004
guido.prause@mevis.fraunhofer.de
Über Fraunhofer MEVIS:
Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS in Bremen ist ein weltweit führendes und international vernetztes Forschungs- und Entwicklungszentrum für Computerunterstützung in der bildbasierten Medizin. Es verfolgt einen patientenzentrierten und auf die klinischen Abläufe zugeschnittenen Ansatz zur Lösung klinisch relevanter Fragestellungen der bildgestützten Diagnose und Therapie. Der Fokus liegt dabei auf den epidemiologisch bedeutsamen Erkrankungen des Gehirns, der Brust, Leber und Lunge, des Herz-Kreislaufsystems sowie auf Krebserkrankungen.

Dr. Guido Prause | Fraunhofer-Institut
Weitere Informationen:
http://www.mevis.fraunhofer.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mikroskop im Kugelschreiberformat: Auf dem Weg zur endoskopischen Krebsdiagnose
28.04.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Highspeed-Laser erkennt Krebs in zwei Minuten
25.04.2017 | University of Hong Kong

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie