Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Röntgenverfahren: Details aus dem Inneren eines Zahns

19.11.2015

Sowohl in der Materialforschung als auch in der biomedizinischen Forschung ist es wichtig, selbst kleinste Nanostrukturen zum Beispiel in Knochen oder Kohlefaserwerkstoffen darzustellen. Ein Team der Technischen Universität München (TUM), der Universität Lund, der Charité Berlin und des Paul Scherrer Instituts (PSI) haben jetzt ein neues Computertomographieverfahren entwickelt, das nicht die Absorption, sondern die Streuung von Röntgenstrahlen nutzt. Mit dieser Methode können erstmals Nanostrukturen in millimetergroßen Objekten dargestellt werden. Die Forscher machten damit die dreidimensionale Struktur von Kollagenfasern in einem Stück menschlichen Zahn sichtbar.

Grundsätzlich existiert die Röntgen-Computertomographie bereits seit den Sechzigerjahren: ein Objekt wird aus verschiedenen Richtungen mit Röntgenstrahlen durchleuchtet und ein Computer generiert aus diesen Einzelbildern ein dreidimensionales Bild des Objekts.


Darstellung der Orientierung der Kollagenfasern innerhalb einer Zahnprobe. Die Einzeldaten wurden mit Röntgenstreuung-CT aufgenommen und daraus eine dreidimensionale Nanostruktur der Probe berechnet. (Bild: Schaff et al. / Nature)

Hierbei wird die unterschiedliche Absorption von Röntgenstrahlen in verschiedenen Materialien als Kontrast verwendet. Die neue Methode, die Prof. Franz Pfeiffer, Professor für Biomedizinische Physik an der TUM, und sein Team entwickelt haben, nutzt aber nicht die Absorption der Strahlen, sondern deren Streuung. Die Ergebnisse konnten sie jetzt in der Fachzeitschrift Nature veröffentlichen.

Streuung liefert detailliertes Bild von Nanostrukturen

Prinzipiell verhalten sich Röntgenstrahlen wie Licht mit sehr kleiner Wellenlänge. Damit lässt sich auch die neue Methode erklären: Strahlt man Licht auf eine strukturierte Oberfläche, z.B. von einer CD, entsteht in der Reflexion ein charakteristisches Regenbogenmuster. Obwohl man die feinen Rillen der CD nicht direkt sehen kann, wird so durch die Ablenkung der Lichtstrahlen – auch Streuung genannt – indirekt Information über die Beschaffenheit des Objekts bekannt.

Der gleiche Effekt kann auch mit Röntgenstrahlung beobachtet werden und das haben die Wissenschaftler für ihre Methode genutzt. Der Vorteil von Röntgenstrahlen gegenüber sichtbaren Lichts, ist die Möglichkeit, Material zu durchdringen und so detaillierte Informationen aus dem Inneren von Objekten zu liefern. Die Forscher haben diese dreidimensionale Streuinformation jetzt mit der Computertomographie (CT) kombiniert.

Das konventionelle Tomographieverfahren errechnet für jeden dreidimensionalen Bildpunkt innerhalb eines Objektes, einem sogenannten Voxel, genau einen Wert. Das neu entwickelte Verfahren erlaubt es, jedem Voxel eine Vielzahl von Werten zuzuordnen, da das Streulicht aus unterschiedlichen Richtungen kommt „Durch diese zusätzliche Information können wir erheblich mehr über die Nanostruktur eines Objektes lernen, als mit herkömmlichen Tomographieverfahren. Über die indirekte Messung der Streuung lassen sich jetzt auch sehr kleine Strukturen darstellen, die vorher zu klein für eine direkte räumliche Auflösung waren“, erklärt Franz Pfeiffer.

Innenansicht eines Zahns

Für Demonstrationszwecke untersuchten die Wissenschaftler ein rund drei Millimeter großes Stück eines menschlichen Zahns. Ein Großteil eines menschlichen Zahns besteht aus dem Stoff Dentin. Er besteht zu einem großen Teil aus mineralisierten Kollagenfasern, deren Struktur hauptverantwortlich für die mechanischen Eigenschaften des Zahns ist. Die Wissenschaftler konnten dieses winzige Fasergeflecht jetzt sichtbar machen.

Insgesamt wurden annähernd 1,4 Millionen Streubilder aufgenommen, bei denen das Streulicht aus unterschiedlichen Richtungen kam. Die einzelnen Streubilder wurden anschließend mit einem eigens entwickelten Algorithmus verarbeitet, um schrittweise eine komplette Rekonstruktion der dreidimensionalen Streuverteilung zu erstellen.

„Unser Algorithmus berechnet für jedes Streubild individuell die exakte Richtung der Streuinformation und erstellt danach Gruppen gleicher Streurichtung. Damit lassen sich die aufgenommenen Strukturen rekonstruieren“, sagt Martin Bech, ehemaliger PostDoc der TUM und jetzt Assistenz-Professor an der Universität Lund.

Somit konnte erstmals die dreidimensionale Orientierung der Kollagenfasern innerhalb einer Probe dieser Größe klar dargestellt werden. Die Ergebnisse sind in Einklang mit dem bisherigen, aus dünnen Schnitten gewonnenen Wissen über die untersuchten Strukturen.

„Für große Objekte eignet sich nach wie vor ein hochentwickeltes CT-Verfahren besser. Die Darstellung von Strukturen im Nanometerbereich in millimetergroßen Objekten ist aber erst durch unsere neue Methode in dieser Präzision möglich“, erklärt Florian Schaff, Erstautor der Publikation.

Publikation
Florian Schaff, Martin Bech, Paul Zaslansky, Christoph Jud, Marianne Liebi, Manuel Guizar-Sicairos und Franz Pfeiffer, Six-dimensional real and reciprocal space small-angle x-ray scattering tomography, Nature, 19. November 2015.
DOI: 10.1038/nature16060
http://www.nature.com/nature/journal/v527/n7578/full/nature16060.html

Kontakt
Prof. Dr. Franz Pfeiffer
Lehrstuhl für Biomedizinische Physik
Department für Physik / IMETUM
Technische Universität München
Tel.: +49 89 289 12551 (Büro) / +49 89 289 12552 (Sekretariat)
franz.pfeiffer@tum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32738 - Diese Pressemeldung im Web
http://www.tum.de/die-tum/aktuelles - Alle Pressemeldungen der TU München

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie