Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Messinstrument soll Frühchen vor Behinderungen schützen

27.02.2014

Babys, die zu früh zur Welt kommen, haben oft einen schweren Start. Viele leiden auch später noch an Entwicklungsstörungen, die auf eine fehlerhafte Versorgung des Gehirns mit Sauerstoff zurückzuführen sind.

Neun Unternehmen und Forschungseinrichtungen aus vier europäischen Ländern entwickeln deshalb jetzt im Forschungsprojekt »BabyLux« ein hochgenaues optisches Messinstrument, mit dem sich die Sauerstoffversorgung im Gehirn von Frühgeborenen besser überwachen lässt und das die Kleinen so vor späteren Behinderungen schützt.


Projektlogo »BabyLux«

Eine Initiative von neun Partnern aus vier europäischen Ländern hat sich im EU-Forschungsprojekt »BabyLux« zusammengeschlossen, um ein neues optisches Messinstrument auf Basis der Nahinfrarotspektroskopie zu entwickeln: Damit soll sich die Sauerstoffversorgung im Gehirn von Frühgeborenen, die vor der 28. Schwangerschaftswoche zur Welt gekommen sind, nicht-invasiv und schmerzfrei besonders exakt und zuverlässig messen lassen.

Deuten sich aufgrund der Messdaten Komplikationen an, können Mediziner schneller eingreifen und so das Risiko von Gehirnschädigungen und Spätfolgen wie Behinderungen senken. Mit Hilfe der optischen Messtechnik könnten allein in Europa mehr als 1000 Kinder pro Jahr vor den Folgeschäden einer Sauerstoffunter- oder -überversorgung bewahrt werden, schätzen die Forscher.

Das BabyLux-Messinstrument ist so handlich konzipiert, dass es problemlos neben dem Kinderbett Platz finden kann. Seine Messungen sollen innerhalb weniger Minuten zuverlässige Ergebnisse liefern und können in besonders kritischen Fällen auch zu einer kontinuierlichen Überwachung herangezogen werden.

Zu früh auf die Welt – ein Risiko für die Gesundheit

Nach Informationen einer WHO-Studie von 2012 werden jährlich weltweit mehr als 15 Millionen Babys zu früh geboren. Über 80 Prozent aller Frühgeborenen kommen in der 32. bis 37. Schwangerschaftswoche zur Welt. Und mehr als drei Viertel von Ihnen überleben heute dank guter medizinischer Versorgung auch ohne intensivmedizinische Betreuung.

Doch Babys, die extrem früh zur Welt kommen, also vor der 28. Schwangerschaftswoche, haben es besonders schwer. Sie bilden mit 0,5 Prozent aller Geburten immer noch eine recht große Gruppe – mehr als 25 000 Babys pro Jahr allein in Europa. Sie bleiben oft monatelang unter Intensivpflege im Krankenhaus, denn ihr Sterberisiko in dieser Zeit liegt bei rund 20 Prozent. Ungefähr ein Viertel dieser besonders empfindlichen Frühchen leiden auch im späteren Leben noch unter Beeinträchtigungen, oft aufgrund von Gehirnschädigungen.

Europäisches Ziel: Lücken in der Frühgeborenen-Medizin schließen

Im Projekt »BabyLux« wirken neben dem Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen und der PicoQuant GmbH aus Berlin das ICFO-Institute of Photonic Sciences, die Hemophotonics SL und das Competitive Network SL aus Spanien, Capital Region aus Dänemark sowie die italienische Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico mit. Die Federführung des Projekts liegt bei der italienischen Politecnico di Milano mit der Fondazione Politecnico di Milano. Die Europäische Kommission fördert »BabyLux« im ICT Policy Support Programme (ICT PSP) als Teil des »Competitiveness and Innovation«-Rahmenprogramms für drei Jahre und unterstützt eine sechsmonatige Erprobungsphase im Mangiagalli Hospital in Mailand sowie am Rigshospitalet in Kopenhagen.

Das Fraunhofer-Institut für Produktionstechnologie IPT in Aachen hat im Projekt die Aufgabe übernommen, eine faserbasierte kompakte Sonde für das System zu entwickeln, die parallele Messungen anhand zweier Spektroskopieverfahren ermöglicht. Die Berliner PicoQuant GmbH befasst sich mit der Entwicklung speziell gepulster Diodenlaser und einer sehr empfindlichen, zeitaufgelösten Detektion der vom Blut absorbierten sowie rückgestreuten Anteile des Laserlichtes. So kann nicht-invasiv und dauerhaft die Sauerstoffversorgung im Gehirn überwacht werden. Die Integration dieser Komponenten in ein klinktaugliches Gesamtsystem erfolgt dann beim spanischen Projektpartner Hemophotonics SL.

»Wir freuen uns sehr, ein europäisches Projekt mit solch enormer Bedeutung auf die Beine gestellt zu haben«, berichtet Projektkkordinator Alessandro Torricelli, Associate Professor am Department of Physics des Politecnico di Milano. »Unser Ziel ist es, mit dem Projekt »BabyLux« eine Lücke in der Intensivpflege von Frühgeborenen zu schließen. Denn bis heute gibt es keine zuverlässigen Instrumente, mit denen wir die Blut- und Sauerstoffversorgung im Gehirn von Frühgeborenen so gründlich überwachen können. Durch die Zusammenarbeit von Ingenieuren, Medizinern und mittelständischen Unternehmen aus vier europäischen Ländern können wir am Ende der dreijährigen Förderung einen bedeutenden Schritt vorankommen – und viel für die Zukunft unserer Kleinsten tun.«

Das Fraunhofer-Institut für Produktionstechnologie IPT vereint langjähriges Wissen und Erfahrung aus allen Gebieten der Produktionstechnik. In den Bereichen Prozesstechnologie, Produktionsmaschinen, Mechatronik, Produktionsqualität und Messtechnik sowie Technologiemanagement bietet das Fraunhofer IPT seinen unseren Kunden und Projektpartnern angewandte Forschung und Entwicklung mit unmittelbar umsetzbaren Ergebnissen. Das Leistungsspektrum des Instituts orientiert sich an den individuellen Aufgaben und Herausforderungen innerhalb bestimmter Branchen, Technologien und Produktbereiche, darunter Automobilbau und -zulieferer, Energie, Life Sciences, Luftfahrt, Maschinen- und Anlagenbau, Optik, Präzisions- und Mikrotechnik sowie Werkzeug- und Formenbau.

Die PicoQuant GmbH wurde 1996 mit Sitz im Wissenschafts- und Wirtschaftsstandort Berlin-Adlershof gegründet und ist im Bereich der optoelektronischen Forschung und Entwicklung tätig. Das Unternehmen ist führend auf dem Gebiet der Einzelphotonenzählung und deren Anwendungen. Das Produktportfolio umfasst gepulste Diodenlaser und LEDs, Messsysteme für die Einzelphotonenzählung, Fluoreszenz- Lebenszeit-Spektrometer sowie zeitaufgelöste konfokale Mikroskope.

Kontakt

Dipl.-Phys. Niels König
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
Telefon +49 241 8904-113
niels.koenig@ipt.fraunhofer.de
www.ipt.fraunhofer.de

Dipl.-Phys. Rainer Erdmann
PicoQuant GmbH
Rudower Chaussee 29
12489 Berlin
Telefon +49 030 6392-6560
erdmann@picoquant.com
www.picoquant.com

Diese Pressemitteilung und das Projektlogo in druckfähiger Qualität finden Sie auch im Internet unter
http://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20140226babylux.html

Weitere Informationen:

http://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20140226babylux.html

Susanne Krause | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise