Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Scanner-Prototyp für die Darstellung von Weichgewebe

11.09.2012
Ein vielversprechendes Bildgebungsverfahren kommt erstmals in einem Prototyp eines Computertomographen (CT) zum Einsatz.

Die neue Röntgen-Phasenkontrast-Technologie liefert eine deutlich verbesserte Darstellung von Weichgewebe. In einer aktuellen Ausgabe des Fachjournals PNAS stellt ein Forscherteam unter Leitung der TU München erste Ergebnisse vor.

Die Arbeit markiert einen wichtigen Schritt in der Entwicklung dieser Technologie: Die neuen Tomographen lassen sich zunächst in der präklinischen Forschung am Tiermodell anwenden – und sollen später auch in der Medizin eingesetzt werden.

Die herkömmliche Röntgentechnologie misst die Intensität der Röntgenstrahlen, die ein Objekt oder Gewebe durchdringen. Diese Bildgebungsmethode hat jedoch Beschränkungen in der Anwendung bei bestimmten Weichgeweben: Einige Tumore oder Knorpelgewebe beispielsweise lassen sich mit der klassischen Methode nur bedingt darstellen. Im Gegensatz dazu registriert das neue Röntgenverfahren zusätzlich, wie stark die Strahlen von Strukturen im Körper abgelenkt werden. Um diesen äußerst schwachen Effekt sichtbar zu machen, nutzen die Wissenschaftler beim sogenannten gitterbasierten Phasenkontrast-Verfahren mehrere röntgenoptische Strukturen (Gitter), die im Röntgenstrahl präzise angeordnet sind.
Der Leiter dieses Forschungsteams, Professor Franz Pfeiffer vom Lehrstuhl für Biomedizinische Physik an der TU München erklärt: „Seit Jahren arbeiten wir an einer neuen Röntgentechnologie, um die Diagnostik in der medizinischen Bildgebung zu verbessern. Bisher haben wir mit unserer Methode entnommenes Gewebe mit experimentellen Röntgen-Aufbauten im technischen Labor untersucht. Nun haben wir einen großen Schritt in Richtung biomedizinischer Anwendung getan und die neue Technologie in einen Mikro-Computertomographen eingebaut. Damit bringen wir die Technologie aus dem Entwicklungslabor hin zu Anwendung und wir hoffen, sie in Zukunft auch für Patienten nutzbar zu machen.“

Zusammen mit Partnern aus der Industrie (Bruker microCT / Skyscan) konstruierte das Forscherteam mithilfe von hochpräzisen Phasenkontrastgittern aus dem Karlsruher Institut für Technologie (KIT) zwei Prototypen der neuen Computertomographen. Ein Gerät wird beim Kooperationspartner in Belgien eingesetzt, das zweite ist am Zentralinstitut für Medizintechnik der TUM auf dem Garchinger Forschungscampus aufgebaut. „Die größte Herausforderung bei der Implementierung der neuen Röntgentechnologie im Mikro-Computertomographen waren die mechanische Stabilität und damit verbundene Bildstörungen im Phasenkontrast“, erläutert Arne Tapfer, Erstautor der PNAS-Studie: „Diese Störungen konnten wir mithilfe von Software-Algorithmen korrigieren und auch zeigen, dass diese Korrekturen präzise funktionieren.“ Die Wissenschaftler validierten ihren Algorithmus durch die Messung eines „Phantoms“ mit chemischen Flüssigkeiten. Das Potenzial der neuen Technologie für die biomedizinische Bildgebung wurde an biologischem Gewebe untersucht – das Ergebnis: In der Phasenkontrast-Bildgebung können unterschiedliche Gewebebereiche deutlich besser dargestellt werden.

„Mit dieser innovativen Technologie haben wir den Startschuss für eine neue Generation von Computertomographen gesetzt“, sagt Alexander Sasov, Geschäftsführer des Industriepartners Bruker microCT, der bei der Projektentwicklung seine langjährige Expertise in der Konstruktion von Mikro-Computertomographen für verschiedenste Anwendungsbereiche einbrachte.

Die Forschungsarbeiten wurden unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzcluster Munich Center for Advanced Photonics (MAP) und durch den Europäischen Forschungsrat (ERC, FP7, Starting Grant No. 240142).

Originalpublikation:
Experimental results from a preclinical x-ray phase-contrast CT scanner. Arne Tapfer, Martin Bech, Astrid Velroyen, Jan Meiser, Jürgen Mohr, Marco Walter, Joachim Schulz, Bart Pauwels, Peter Bruyndonckx, Xuan Liu, Alexander Sasov, and Franz Pfeiffer. PNAS Early Edition for the week of Sept. 10, 2012.

Kontakt:
Prof. Franz Pfeiffer
Technische Universität München
Physik Department / Zentralinstitut für Medizintechnik
Tel.: +49 89 289 12552
Fax.: +49 89 289 12548
E-Mail: franz.pfeiffer@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.e17.ph.tum.de
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/lang/article/30036/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

nachricht Cochlea-Implantat: Viele Formen funktionieren
10.08.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz