Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mini-Sensor misst Magnetfelder des Gehirns

29.05.2012
Neues optisches Magnetometer besteht Praxistest in der PTB und beweist sein Potenzial für preisgünstigere Gehirnstromuntersuchungen für die neurologische Diagnostik und die Grundlagenforschung.

Ein neuer Magnetfeldsensor in Würfelzuckergröße soll in Zukunft die Messung von Hirnaktivität erleichtern. Im „magnetisch stillsten Raum der Welt“ der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin hat der Sensor jetzt eine wichtige technische Prüfung bestanden: Mit ihm konnten erfolgreich sowohl spontane als auch gezielt hervorgerufene Magnetfelder des Gehirns gemessen werden.


Magnetfeldsensoren von der Größe eines Stückes Zucker mit elektrischen und optischen Zuleitungen.
Foto: PTB/NIST

Damit beweist er sein Potenzial für medizinische Anwendungen, wie z.B. die Untersuchung der Gehirnströme beim Lösen kognitiver Aufgaben als Basis einer neurologischen Diagnostik. Der entscheidende Unterschied zur bisher genutzten Kryoelektronik ist das Wegfallen einer aufwendigen Kühlung, da die vom US-amerikanisches Institut NIST gefertigten optischen Magnetometer bei Raumtemperatur arbeiten. Die Ergebnisse sind in einer aktuellen Ausgabe der Fachzeitschrift Biomedical Optics Express veröffentlicht.

Chip-scale Atomic Magnetometer (CSAM) nennen die Wissenschaftler den hochempfindlichen Magnetfeldsensor, der neben der Mikrooptik ein Gas aus Rubidium-Atomen enthält, deren Spinänderung für die Messung genutzt wird. Sie können direkt am Körper angebracht werden. Entwickelt wurde der CSAM in vielen Jahren gezielter Forschungs- und Entwicklungsarbeit am NIST (National Institute of Standards and Technology), dem US-amerikanischen Schwesterinstitut der PTB.

Die PTB bot den US-Kollegen einzigartige Voraussetzungen für einen Praxistest. Dazu zählen unter anderem der magnetisch ruhigste Raum der Welt und eine wissenschaftliche Mannschaft, die in zahlreichen Forschungsprogrammen große Erfahrung bei der Messung biomagnetischer Felder des Menschen mittels SQUIDs erwerben konnte.

Bisher werden für die Messung extrem schwacher Magnetfelder kryoelektrische Sensoren, sogenannte supraleitende Quanteninterferometer, kurz SQUIDs, verwendet. Sie gelten als eine Art „Goldstandard“ im Bereich der Magnetfeldmessung. Ihr Nachteil: Erst bei extrem tiefen Temperaturen von –269 Grad Celsius arbeiten sie optimal und ihre Anwendung ist daher teuer und unflexibel. Die Nutzung von CSAM-Sensoren könnte das ändern. Zwar ist ihre Empfindlichkeit noch etwas geringer als die der SQUIDs, doch haben sie das Potenzial für vergleichbar genaue Messungen bei verringerten Kosten. Während SQUIDs wegen der kryogenen Kühlung immer einige Zentimeter von Körper entfernt bleiben müssen, können CSAMs direkt am Körper platziert werden. Das magnetische Feld der physiologischen Körperströme nimmt stark mit dem Abstand ab, sodass jeder Zentimeter einen großen Gewinn an Signalstärke bringt.

Eine wichtige Anwendung ist die Messung der Magnetfeldverteilung um das Gehirn herum, das sogenannte Magnetenzephalogramm (MEG). Es ermöglicht es, die elektrische Aktivität von Neuronen zu charakterisieren. Derartige funktionale Untersuchungen spielen heute eine immer größere Bedeutung in der Neurologie und der Neurowissenschaft. Sowohl bei psychischen Erkrankungen aller Altersgruppen wie auch bei altersbedingten Erkrankungen besteht ein dringender Bedarf an objektivierbaren elektrophysiologischen Messgrößen, die die klinische Diagnostik unterstützen.

Die Wissenschaftler von NIST und PTB hatten bereits 2010 einen Vorläufer des jetzigen CSAM für Magnetfeldmessung am menschlichen Herzen erfolgreich getestet. Diesmal wurden die CSAM-Sensoren in vier Millimeter Abstand vom Kopf gesunder Testpersonen in Position gebracht. Am Hinterkopf konnten bei wachen Personen sogenannte Alphawellen gemessen werden – ein Grundrhythmus der elektrischen Hirnaktivität, der sich spontan bei Entspannung einstellt. In einer weiteren Versuchsreihe konnte mit den CSAM-Sensoren sogar die Verarbeitung von Berührungsreizen im Gehirn durch das damit verbundene, sehr schwache Magnetfeld aufgezeichnet werden. Zur eindeutigen Validierung der Messergebnisse wurden zu allen CSAM-Messungen parallel MEG-Aufzeichnungen mit den bewährten SQUID-Sensoren durchgeführt. if/ptb

Presseinformation des NIST
http://www.nist.gov/pml/div688/brain-041912.cfm
Wissenschaftliche Veröffentlichungen
• Gemeinsames aktuelles Experiment von PTB und NIST:
T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012)

http://www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

• PTB-NIST-Experiment von 2010:
S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.
Ansprechpartner
Dr. Tilmann Sander-Thömmes, PTB-Arbeitsgruppe 8.21 Biomagnetismus,
Tel. (030) 3481-7436, E-Mail: tilmann.sander-thoemmes@ptb.de

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Ein Quantensprung in der Herzdiagnostik
22.09.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

nachricht Bypass – Lebensbrücke für das Herz; keine Angst vor der Herz-Operation
21.09.2017 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie