Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mini-Sensor misst Magnetfelder des Gehirns

29.05.2012
Neues optisches Magnetometer besteht Praxistest in der PTB und beweist sein Potenzial für preisgünstigere Gehirnstromuntersuchungen für die neurologische Diagnostik und die Grundlagenforschung.

Ein neuer Magnetfeldsensor in Würfelzuckergröße soll in Zukunft die Messung von Hirnaktivität erleichtern. Im „magnetisch stillsten Raum der Welt“ der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin hat der Sensor jetzt eine wichtige technische Prüfung bestanden: Mit ihm konnten erfolgreich sowohl spontane als auch gezielt hervorgerufene Magnetfelder des Gehirns gemessen werden.


Magnetfeldsensoren von der Größe eines Stückes Zucker mit elektrischen und optischen Zuleitungen.
Foto: PTB/NIST

Damit beweist er sein Potenzial für medizinische Anwendungen, wie z.B. die Untersuchung der Gehirnströme beim Lösen kognitiver Aufgaben als Basis einer neurologischen Diagnostik. Der entscheidende Unterschied zur bisher genutzten Kryoelektronik ist das Wegfallen einer aufwendigen Kühlung, da die vom US-amerikanisches Institut NIST gefertigten optischen Magnetometer bei Raumtemperatur arbeiten. Die Ergebnisse sind in einer aktuellen Ausgabe der Fachzeitschrift Biomedical Optics Express veröffentlicht.

Chip-scale Atomic Magnetometer (CSAM) nennen die Wissenschaftler den hochempfindlichen Magnetfeldsensor, der neben der Mikrooptik ein Gas aus Rubidium-Atomen enthält, deren Spinänderung für die Messung genutzt wird. Sie können direkt am Körper angebracht werden. Entwickelt wurde der CSAM in vielen Jahren gezielter Forschungs- und Entwicklungsarbeit am NIST (National Institute of Standards and Technology), dem US-amerikanischen Schwesterinstitut der PTB.

Die PTB bot den US-Kollegen einzigartige Voraussetzungen für einen Praxistest. Dazu zählen unter anderem der magnetisch ruhigste Raum der Welt und eine wissenschaftliche Mannschaft, die in zahlreichen Forschungsprogrammen große Erfahrung bei der Messung biomagnetischer Felder des Menschen mittels SQUIDs erwerben konnte.

Bisher werden für die Messung extrem schwacher Magnetfelder kryoelektrische Sensoren, sogenannte supraleitende Quanteninterferometer, kurz SQUIDs, verwendet. Sie gelten als eine Art „Goldstandard“ im Bereich der Magnetfeldmessung. Ihr Nachteil: Erst bei extrem tiefen Temperaturen von –269 Grad Celsius arbeiten sie optimal und ihre Anwendung ist daher teuer und unflexibel. Die Nutzung von CSAM-Sensoren könnte das ändern. Zwar ist ihre Empfindlichkeit noch etwas geringer als die der SQUIDs, doch haben sie das Potenzial für vergleichbar genaue Messungen bei verringerten Kosten. Während SQUIDs wegen der kryogenen Kühlung immer einige Zentimeter von Körper entfernt bleiben müssen, können CSAMs direkt am Körper platziert werden. Das magnetische Feld der physiologischen Körperströme nimmt stark mit dem Abstand ab, sodass jeder Zentimeter einen großen Gewinn an Signalstärke bringt.

Eine wichtige Anwendung ist die Messung der Magnetfeldverteilung um das Gehirn herum, das sogenannte Magnetenzephalogramm (MEG). Es ermöglicht es, die elektrische Aktivität von Neuronen zu charakterisieren. Derartige funktionale Untersuchungen spielen heute eine immer größere Bedeutung in der Neurologie und der Neurowissenschaft. Sowohl bei psychischen Erkrankungen aller Altersgruppen wie auch bei altersbedingten Erkrankungen besteht ein dringender Bedarf an objektivierbaren elektrophysiologischen Messgrößen, die die klinische Diagnostik unterstützen.

Die Wissenschaftler von NIST und PTB hatten bereits 2010 einen Vorläufer des jetzigen CSAM für Magnetfeldmessung am menschlichen Herzen erfolgreich getestet. Diesmal wurden die CSAM-Sensoren in vier Millimeter Abstand vom Kopf gesunder Testpersonen in Position gebracht. Am Hinterkopf konnten bei wachen Personen sogenannte Alphawellen gemessen werden – ein Grundrhythmus der elektrischen Hirnaktivität, der sich spontan bei Entspannung einstellt. In einer weiteren Versuchsreihe konnte mit den CSAM-Sensoren sogar die Verarbeitung von Berührungsreizen im Gehirn durch das damit verbundene, sehr schwache Magnetfeld aufgezeichnet werden. Zur eindeutigen Validierung der Messergebnisse wurden zu allen CSAM-Messungen parallel MEG-Aufzeichnungen mit den bewährten SQUID-Sensoren durchgeführt. if/ptb

Presseinformation des NIST
http://www.nist.gov/pml/div688/brain-041912.cfm
Wissenschaftliche Veröffentlichungen
• Gemeinsames aktuelles Experiment von PTB und NIST:
T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012)

http://www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

• PTB-NIST-Experiment von 2010:
S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.
Ansprechpartner
Dr. Tilmann Sander-Thömmes, PTB-Arbeitsgruppe 8.21 Biomagnetismus,
Tel. (030) 3481-7436, E-Mail: tilmann.sander-thoemmes@ptb.de

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik