Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Laser-Prototyp soll schmerzarme Kariesbehandlung ermöglichen

12.01.2011
Wissenschaftler der Universität Bonn entwickeln momentan mit Partnern aus Forschung und Industrie ein neuartiges Lasertherapiesystem. Das Gerät soll künftig eine nahezu schmerzfreie und sehr präzise Zahnbehandlung ermöglichen.

6,8 Millionen Euro stellt das BMBF für das Projekt zur Verfügung, das bereits seit 2009 läuft. Jetzt wurde ein erster Prototyp fertig gestellt, den Ärzte und Physiker in Bonn momentan testen – unter anderem an Stoßzähnen von Mammuts.

Der Zahn ist schon etwas älter, rund zehntausend Jahre, grob geschätzt. Und jetzt soll er sein erstes Loch bekommen. Energisch schiebt sich Florian Schelle die Schutzbrille über die Augen und schreitet zur Tat. Mit ein paar Drehungen am Rändelrad bewegt er die Elfenbeinscheibe in den Strahlengang des Lasers. Es puckert leise, ein helles Rauchwölkchen steigt auf und verschwindet im Absaugstutzen. „Pulverisiertes Zahnbein“, kommentiert der Physiker. Nach wenigen Sekunden ist alles vorbei: Der Laser hat eine würfelförmige Ausschachtung im Mammut-Stoßzahn erzeugt, kaum größer als ein paar Zuckerkristalle. So präzise würde das kein normaler Bohrer hinbekommen.

Der Strahl, mit dem die Bonner Forscher ihre Proben malträtieren, besteht vor allem aus Dunkelheit. 500.000 Mal pro Sekunde „tropft“ aus dem Laser ein kleines Lichtpaket, ähnlich wie Wasser aus einem Wasserhahn. Zweieinhalb Millimeter ist jeder Lichttropfen lang; zwischen zwei Tropfen liegen 600 Meter Finsternis. „Unser Laser arbeitet mit ultrakurzen Pulsen“, erklärt Florian Schelle. „Das ist auch der Grund, warum man mit ihm Löcher in Zähne bohren kann.“ Zwar ist die Gesamtenergie des Strahls gar nicht mal besonders hoch. In seinen „lichten Momenten“ bringt er jedoch für extrem kurze Zeit dieselbe Leistung wie ein modernes Windkraftwerk. Wenn so ein Lichttropfen mit geballter Wucht auf den Zahn aufschlägt, zerreißt er die Moleküle. Wärme und Vibrationen werden dabei kaum übertragen. Daher dürfte die Methode für Patienten so gut wie schmerzfrei sein.

Das Projekt MiLaDi (Minimalinvasive Laserablation und Diagnose von oralem Hartgewebe) könnte für die Zahnheilkunde eine kleine Revolution bedeuten. Und zwar nicht nur deshalb, weil der Lichtbohrer Patienten die Angst vor dem Zahnarztstuhl zu nehmen verspricht. „Wir können den Bohrer beispielsweise mit einem Diagnoselaser kombinieren“, erklärt Projektleiter Professor Dr. Matthias Frentzen von der Poliklinik für Parodontologie, Zahnerhaltung und präventive Zahnheilkunde. „So können wir während der Behandlung analysieren, ob wir uns noch in einem Kariesherd befinden oder schon im gesunden Gewebe – und den Bohrer rechtzeitig stoppen.“

Es gibt heute bereits Laser, die das können. Sie haben aber ein begrenztes Einsatzspektrum. Grund: Jedes Gewebe spricht auf eine andere Lichtfarbe an. Ein Laser, der besonders gut Karies entfernt, eignet sich daher nicht, um altes Füllungsmaterial abzutragen oder die Aussparung für ein Inlay in den Zahn zu präparieren. Nicht so ultrakurzgepulste Laser: Sie können aufgrund ihrer hohen Leistungsdichte beinahe jedes Material bearbeiten. „Wir wollen eine Art all-in-one-System bauen“, betont Frentzen.

Frei programmierbarer Bohrkopf

Ein weiterer Vorteil ist die hohe Präzision des Laserbohrers: Der Strahl ist nicht einmal halb so dick wie eine Wimper und damit streng genommen sogar zu fein, um damit vernünftig zu arbeiten. Die Forscher verpassen ihrem Bohrer daher einen virtuellen Bohrkopf: Sie lenken den Laser über zwei Spiegel so ab, dass er rasend schnell ein frei programmierbares Muster abfährt. „Sehen Sie hier“, sagt Florian Schelle und holt mit ein paar Mausklicks ein aus vielen parallelen Linien zusammengesetztes Quadrat auf den Bildschirm. „Das ist unser Bohrkopf: Der Lichtstrahl fährt die Linien nach und fräst so eine viereckige Aussparung in den Zahn.“ Durch Variation des Musters könnten die Forscher auch runde oder sogar herzförmige Löcher bohren – und das auf hundertstel Millimeter genau.

Fast 7 Millionen Euro stehen für das vom Bundesministerium für Bildung und Forschung geförderte Projekt zur Verfügung. Bis 2012 wird die Förderung zunächst laufen. Mehr als anderthalb Jahre haben die Bonner Wissenschaftler zusammen mit zwei Industrieunternehmen an der Entwicklung des Prototyps gearbeitet. Jetzt stehen weitere Forschungsarbeiten auf dem Programm: Welche Pulsparameter eignen sich für verschiedene Materialien am besten? Wirkt der Strahl tatsächlich nur lokal, oder schädigt er auch die Umgebung der behandelten Stelle? Werden beim Bohren gefährliche Substanzen frei?

„Elfenbein eignet sich aufgrund seiner dentinähnlichen Struktur besonders gut für unsere Experimente“, erläutert Frentzen. Stoßzähne von Elefanten sind verständlicherweise aus Artenschutzgründen tabu. Glücklicherweise birgt aber der sibirische Permafrost-Boden Mammut-Stoßzähne zuhauf. In Zukunft wird der Bedarf der Forscher nach den eiszeitlichen Funden aber wohl zurückgehen: Sie führen viele ihrer Tests inzwischen an Schweinekiefern durch. Die sind nicht nur leicht zu bekommen, sondern ihre Zähne ähneln auch frappierend denen des Menschen.

Kontakt:
Professor Dr. Matthias Frentzen
Poliklinik für Zahnerhaltung und Parodontologie der Universität Bonn
Telefon: 0228/287-22470
E-Mail: frentzen@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.miladi.uni-bonn.de
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Deutschlandweit erstes Gerät für hoch fokussierten Ultraschall bei Tremor und Parkinson
11.04.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Nuklearmedizinische Herzuntersuchungen – Neue Techniken, größere Präzision
09.04.2018 | Deutsche Gesellschaft für Nuklearmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics