Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Laser-Prototyp soll schmerzarme Kariesbehandlung ermöglichen

12.01.2011
Wissenschaftler der Universität Bonn entwickeln momentan mit Partnern aus Forschung und Industrie ein neuartiges Lasertherapiesystem. Das Gerät soll künftig eine nahezu schmerzfreie und sehr präzise Zahnbehandlung ermöglichen.

6,8 Millionen Euro stellt das BMBF für das Projekt zur Verfügung, das bereits seit 2009 läuft. Jetzt wurde ein erster Prototyp fertig gestellt, den Ärzte und Physiker in Bonn momentan testen – unter anderem an Stoßzähnen von Mammuts.

Der Zahn ist schon etwas älter, rund zehntausend Jahre, grob geschätzt. Und jetzt soll er sein erstes Loch bekommen. Energisch schiebt sich Florian Schelle die Schutzbrille über die Augen und schreitet zur Tat. Mit ein paar Drehungen am Rändelrad bewegt er die Elfenbeinscheibe in den Strahlengang des Lasers. Es puckert leise, ein helles Rauchwölkchen steigt auf und verschwindet im Absaugstutzen. „Pulverisiertes Zahnbein“, kommentiert der Physiker. Nach wenigen Sekunden ist alles vorbei: Der Laser hat eine würfelförmige Ausschachtung im Mammut-Stoßzahn erzeugt, kaum größer als ein paar Zuckerkristalle. So präzise würde das kein normaler Bohrer hinbekommen.

Der Strahl, mit dem die Bonner Forscher ihre Proben malträtieren, besteht vor allem aus Dunkelheit. 500.000 Mal pro Sekunde „tropft“ aus dem Laser ein kleines Lichtpaket, ähnlich wie Wasser aus einem Wasserhahn. Zweieinhalb Millimeter ist jeder Lichttropfen lang; zwischen zwei Tropfen liegen 600 Meter Finsternis. „Unser Laser arbeitet mit ultrakurzen Pulsen“, erklärt Florian Schelle. „Das ist auch der Grund, warum man mit ihm Löcher in Zähne bohren kann.“ Zwar ist die Gesamtenergie des Strahls gar nicht mal besonders hoch. In seinen „lichten Momenten“ bringt er jedoch für extrem kurze Zeit dieselbe Leistung wie ein modernes Windkraftwerk. Wenn so ein Lichttropfen mit geballter Wucht auf den Zahn aufschlägt, zerreißt er die Moleküle. Wärme und Vibrationen werden dabei kaum übertragen. Daher dürfte die Methode für Patienten so gut wie schmerzfrei sein.

Das Projekt MiLaDi (Minimalinvasive Laserablation und Diagnose von oralem Hartgewebe) könnte für die Zahnheilkunde eine kleine Revolution bedeuten. Und zwar nicht nur deshalb, weil der Lichtbohrer Patienten die Angst vor dem Zahnarztstuhl zu nehmen verspricht. „Wir können den Bohrer beispielsweise mit einem Diagnoselaser kombinieren“, erklärt Projektleiter Professor Dr. Matthias Frentzen von der Poliklinik für Parodontologie, Zahnerhaltung und präventive Zahnheilkunde. „So können wir während der Behandlung analysieren, ob wir uns noch in einem Kariesherd befinden oder schon im gesunden Gewebe – und den Bohrer rechtzeitig stoppen.“

Es gibt heute bereits Laser, die das können. Sie haben aber ein begrenztes Einsatzspektrum. Grund: Jedes Gewebe spricht auf eine andere Lichtfarbe an. Ein Laser, der besonders gut Karies entfernt, eignet sich daher nicht, um altes Füllungsmaterial abzutragen oder die Aussparung für ein Inlay in den Zahn zu präparieren. Nicht so ultrakurzgepulste Laser: Sie können aufgrund ihrer hohen Leistungsdichte beinahe jedes Material bearbeiten. „Wir wollen eine Art all-in-one-System bauen“, betont Frentzen.

Frei programmierbarer Bohrkopf

Ein weiterer Vorteil ist die hohe Präzision des Laserbohrers: Der Strahl ist nicht einmal halb so dick wie eine Wimper und damit streng genommen sogar zu fein, um damit vernünftig zu arbeiten. Die Forscher verpassen ihrem Bohrer daher einen virtuellen Bohrkopf: Sie lenken den Laser über zwei Spiegel so ab, dass er rasend schnell ein frei programmierbares Muster abfährt. „Sehen Sie hier“, sagt Florian Schelle und holt mit ein paar Mausklicks ein aus vielen parallelen Linien zusammengesetztes Quadrat auf den Bildschirm. „Das ist unser Bohrkopf: Der Lichtstrahl fährt die Linien nach und fräst so eine viereckige Aussparung in den Zahn.“ Durch Variation des Musters könnten die Forscher auch runde oder sogar herzförmige Löcher bohren – und das auf hundertstel Millimeter genau.

Fast 7 Millionen Euro stehen für das vom Bundesministerium für Bildung und Forschung geförderte Projekt zur Verfügung. Bis 2012 wird die Förderung zunächst laufen. Mehr als anderthalb Jahre haben die Bonner Wissenschaftler zusammen mit zwei Industrieunternehmen an der Entwicklung des Prototyps gearbeitet. Jetzt stehen weitere Forschungsarbeiten auf dem Programm: Welche Pulsparameter eignen sich für verschiedene Materialien am besten? Wirkt der Strahl tatsächlich nur lokal, oder schädigt er auch die Umgebung der behandelten Stelle? Werden beim Bohren gefährliche Substanzen frei?

„Elfenbein eignet sich aufgrund seiner dentinähnlichen Struktur besonders gut für unsere Experimente“, erläutert Frentzen. Stoßzähne von Elefanten sind verständlicherweise aus Artenschutzgründen tabu. Glücklicherweise birgt aber der sibirische Permafrost-Boden Mammut-Stoßzähne zuhauf. In Zukunft wird der Bedarf der Forscher nach den eiszeitlichen Funden aber wohl zurückgehen: Sie führen viele ihrer Tests inzwischen an Schweinekiefern durch. Die sind nicht nur leicht zu bekommen, sondern ihre Zähne ähneln auch frappierend denen des Menschen.

Kontakt:
Professor Dr. Matthias Frentzen
Poliklinik für Zahnerhaltung und Parodontologie der Universität Bonn
Telefon: 0228/287-22470
E-Mail: frentzen@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.miladi.uni-bonn.de
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie