Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Tomographie-Methode liefert Bilder mit molekularer Information

23.05.2011
Ein internationales Forscherteam mit Beteiligung der Technischen Universität München (TUM) hat eine neue Computertomographiemethode entwickelt, die molekulare Einsichten ins Gehirn ermöglicht.

Der neue Ansatz nutzt aus, dass verschiedene molekulare Strukturen im Gehirn zu unterschiedlichen Signaturen in der gestreuten Röntgenstrahlung führen. Die Methode macht beispielsweise die Myelin-Ummantelung von Nervenfasern im Gehirn sichtbar und liefert so wertvolle Information für die Erforschung von Krankheiten wie Multipler Sklerose und Alzheimer. In ihrer Online-Ausgabe berichtet die renommierte Fachzeitschrift NeuroImage über die Ergebnisse der Forschung.

Die Myelin-Ummantelung der Gehirn-Nervenzellen besteht aus schichtartigen Lamellen. Sie umschließen die Nervenzellen, die sogenannten Axonen. Diese Myelin-Schichten sind vor allem deswegen von Bedeutung für das zentrale Nervensystem, weil sie für eine schnelle Weiterleitung der Nervensignale sorgen. Änderungen oder Ausfälle dieser Funktion stehen im Verdacht, an degenerativen Gehirnkrankheiten, wie Alzheimer oder Multipler Sklerose, beteiligt zu sein.

„Die detaillierte Entwicklung dieser Krankheiten ist bisher nicht verstanden“, sagt TUM Professor Franz Pfeiffer, „aber wird zunehmend mit Veränderungen in den Myelin-Schichten in Verbindung gebracht, die für Unterbrechungen in der Signalübertragung zwischen Nervenzellen verantwortlich sind. Vereinfacht gesagt ist das so, wie wenn bei elektrischen Leitungen die Isolierung beschädigt wird und es so zu Kurzschlüssen und Leckströmen kommt.“

Die neue Entwicklung basiert auf konventioneller Computertomographie (CT) Technik, die wohl etabliert ist und in klinischen Anwendungen weltweit eingesetzt wird. Bei einer CT Untersuchung wird der Körper von Röntgenstrahlen durchleuchtet und ein Bilddetektor nimmt unter unterschiedlichen Winkeln die Schattenwürfe des menschlichen Körpers auf. Aus diesen Bildern wird dann durch Bilddatenverarbeitung ein dreidimensionales Abbild des Körperinneren errechnet.

„Der neue Aspekt unserer Methodik“, so TUM Forscher Dr. Martin Bech, „besteht darin, dass nicht nur die vom Körper absorbierte Röntgenstrahlung in solchen Bildern gemessen wird, sondern auch das genaue Streumuster, das durch die Wechselwirkung der Röntgenstrahlen mit den Strukturen im Körperinneren entsteht. Solche Streubilder werden für jeden Punkt und unter jedem Winkel aufgenommen, und diese Zusatzinformation lässt Rückschlüsse auf die molekulare Struktur in jedem Teil der Probe zu.“

Die Streubilder werden mit einem von dem Forscherteam entwickelten Algorithmus verarbeitet. Torben Jensen, Forscher am Niels-Bohr-Institut in Kopenhagen und Erstautor der Veröffentlichung, erläutert: „Wir haben einen Algorithmus entwickelt, der hoch-aufgelöste, dreidimensionale Bilder der Probe errechnet, und typischerweise einige hunderttausend Streubilder analysiert. Dieser Algorithmus berücksichtigt insbesondere die Streusignatur der molekularen Struktur in der Probe.

Als Anwendungsbeispiel hat das Team mit der Methode das Gehirn einer Laborratte untersucht – und verblüffend präzise Einsichten gewonnen. „Wir können im Detail die Myelin-Ummantelung der Nervenzellen sichtbar machen und sogar verschiedene Schichten von nur 17,6 Nanometern Dicke unterscheiden“, erklärt Professor Robert Feidenhans’l vom Niels-Bohr-Institut in Kopenhagen. „Bis jetzt musste man immer kleine Stücke aus der Probe herausschneiden und analysieren, um ähnliche Information zu erhalten. Mit der neuen Methode können wir 250.000 Punkte in der Probe auf einen Schlag analysieren. Dies wird Reihenuntersuchungen bezüglich Dicke und Konzentration von Myelin-Ummantelungen im Zusammenhang mit verschiedenen Krankheitsbildern ermöglichen“.

Die Ergebnisse entstanden in einer internationalen Zusammenarbeit von Forschern aus Deutschland, Dänemark, Schweiz, und Frankreich. Die Experimente wurden an der Synchrotron Lichtquelle des Paul Scherrer Instituts in Villigen (Schweiz) ausgeführt. Zukünftig sollen sie auch auf dem Campus Garching am derzeit im Aufbau befindlichen „Centre for Advanced Laser Applications” (CALA) möglich werden, mit neuen Laser-basierten brillanten Röntgenquellen, wie sie im Exzellenzcluster „Munich-Centre for Advanced Photonics“ entwickelt werden.

Kontakt:

Prof. Dr. Franz Pfeiffer, Dr. Martin Bech
Lehrstuhl für Biomedizinische Physik
Technische Universität München
James-Franck-Straße 1, 85748 Garching, Germany
Tel.: +49 89 289 12551 oder 14532
E-Mail: franz.pfeiffer@tum.de oder martin.bech@tum.de
Dr. Oliver Bunk
Laboratory for Macromolecules and Bioimaging
Paul Scherrer Institute
5232 Villigen PSI, Switzerland
Tel.: (+41) 56 310 3077
E-Mail: oliver.bunk@psi.ch
Weitere Informationen:
http://www.sciencedirect.com/science/article/pii/S1053811911003910 Originalpublikation
http://www.e17.ph.tum.de Website Arbeitsgruppe Prof. Dr. Franz Pfeiffer
http://www.psi.ch/sls/csaxs Website cSAXS-Beamline, PSI
http://www.nbi.ku.dk Website Niels Bor Institut, Kopenhagen

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de
http://www.sciencedirect.com/science/article/pii/S1053811911003910

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Ein Quantensprung in der Herzdiagnostik
22.09.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

nachricht Bypass – Lebensbrücke für das Herz; keine Angst vor der Herz-Operation
21.09.2017 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie