Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Tomographie-Methode liefert Bilder mit molekularer Information

23.05.2011
Ein internationales Forscherteam mit Beteiligung der Technischen Universität München (TUM) hat eine neue Computertomographiemethode entwickelt, die molekulare Einsichten ins Gehirn ermöglicht.

Der neue Ansatz nutzt aus, dass verschiedene molekulare Strukturen im Gehirn zu unterschiedlichen Signaturen in der gestreuten Röntgenstrahlung führen. Die Methode macht beispielsweise die Myelin-Ummantelung von Nervenfasern im Gehirn sichtbar und liefert so wertvolle Information für die Erforschung von Krankheiten wie Multipler Sklerose und Alzheimer. In ihrer Online-Ausgabe berichtet die renommierte Fachzeitschrift NeuroImage über die Ergebnisse der Forschung.

Die Myelin-Ummantelung der Gehirn-Nervenzellen besteht aus schichtartigen Lamellen. Sie umschließen die Nervenzellen, die sogenannten Axonen. Diese Myelin-Schichten sind vor allem deswegen von Bedeutung für das zentrale Nervensystem, weil sie für eine schnelle Weiterleitung der Nervensignale sorgen. Änderungen oder Ausfälle dieser Funktion stehen im Verdacht, an degenerativen Gehirnkrankheiten, wie Alzheimer oder Multipler Sklerose, beteiligt zu sein.

„Die detaillierte Entwicklung dieser Krankheiten ist bisher nicht verstanden“, sagt TUM Professor Franz Pfeiffer, „aber wird zunehmend mit Veränderungen in den Myelin-Schichten in Verbindung gebracht, die für Unterbrechungen in der Signalübertragung zwischen Nervenzellen verantwortlich sind. Vereinfacht gesagt ist das so, wie wenn bei elektrischen Leitungen die Isolierung beschädigt wird und es so zu Kurzschlüssen und Leckströmen kommt.“

Die neue Entwicklung basiert auf konventioneller Computertomographie (CT) Technik, die wohl etabliert ist und in klinischen Anwendungen weltweit eingesetzt wird. Bei einer CT Untersuchung wird der Körper von Röntgenstrahlen durchleuchtet und ein Bilddetektor nimmt unter unterschiedlichen Winkeln die Schattenwürfe des menschlichen Körpers auf. Aus diesen Bildern wird dann durch Bilddatenverarbeitung ein dreidimensionales Abbild des Körperinneren errechnet.

„Der neue Aspekt unserer Methodik“, so TUM Forscher Dr. Martin Bech, „besteht darin, dass nicht nur die vom Körper absorbierte Röntgenstrahlung in solchen Bildern gemessen wird, sondern auch das genaue Streumuster, das durch die Wechselwirkung der Röntgenstrahlen mit den Strukturen im Körperinneren entsteht. Solche Streubilder werden für jeden Punkt und unter jedem Winkel aufgenommen, und diese Zusatzinformation lässt Rückschlüsse auf die molekulare Struktur in jedem Teil der Probe zu.“

Die Streubilder werden mit einem von dem Forscherteam entwickelten Algorithmus verarbeitet. Torben Jensen, Forscher am Niels-Bohr-Institut in Kopenhagen und Erstautor der Veröffentlichung, erläutert: „Wir haben einen Algorithmus entwickelt, der hoch-aufgelöste, dreidimensionale Bilder der Probe errechnet, und typischerweise einige hunderttausend Streubilder analysiert. Dieser Algorithmus berücksichtigt insbesondere die Streusignatur der molekularen Struktur in der Probe.

Als Anwendungsbeispiel hat das Team mit der Methode das Gehirn einer Laborratte untersucht – und verblüffend präzise Einsichten gewonnen. „Wir können im Detail die Myelin-Ummantelung der Nervenzellen sichtbar machen und sogar verschiedene Schichten von nur 17,6 Nanometern Dicke unterscheiden“, erklärt Professor Robert Feidenhans’l vom Niels-Bohr-Institut in Kopenhagen. „Bis jetzt musste man immer kleine Stücke aus der Probe herausschneiden und analysieren, um ähnliche Information zu erhalten. Mit der neuen Methode können wir 250.000 Punkte in der Probe auf einen Schlag analysieren. Dies wird Reihenuntersuchungen bezüglich Dicke und Konzentration von Myelin-Ummantelungen im Zusammenhang mit verschiedenen Krankheitsbildern ermöglichen“.

Die Ergebnisse entstanden in einer internationalen Zusammenarbeit von Forschern aus Deutschland, Dänemark, Schweiz, und Frankreich. Die Experimente wurden an der Synchrotron Lichtquelle des Paul Scherrer Instituts in Villigen (Schweiz) ausgeführt. Zukünftig sollen sie auch auf dem Campus Garching am derzeit im Aufbau befindlichen „Centre for Advanced Laser Applications” (CALA) möglich werden, mit neuen Laser-basierten brillanten Röntgenquellen, wie sie im Exzellenzcluster „Munich-Centre for Advanced Photonics“ entwickelt werden.

Kontakt:

Prof. Dr. Franz Pfeiffer, Dr. Martin Bech
Lehrstuhl für Biomedizinische Physik
Technische Universität München
James-Franck-Straße 1, 85748 Garching, Germany
Tel.: +49 89 289 12551 oder 14532
E-Mail: franz.pfeiffer@tum.de oder martin.bech@tum.de
Dr. Oliver Bunk
Laboratory for Macromolecules and Bioimaging
Paul Scherrer Institute
5232 Villigen PSI, Switzerland
Tel.: (+41) 56 310 3077
E-Mail: oliver.bunk@psi.ch
Weitere Informationen:
http://www.sciencedirect.com/science/article/pii/S1053811911003910 Originalpublikation
http://www.e17.ph.tum.de Website Arbeitsgruppe Prof. Dr. Franz Pfeiffer
http://www.psi.ch/sls/csaxs Website cSAXS-Beamline, PSI
http://www.nbi.ku.dk Website Niels Bor Institut, Kopenhagen

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de
http://www.sciencedirect.com/science/article/pii/S1053811911003910

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie