Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Säulenoption für die U/HPLC

01.09.2010
Agilent Technologies, Waldbronn, Deutschland, E-Mail: Ulrike_Jegle@Agilent.com

Der Poroshell-120-Partikel ist ein neuartiger, teilporöser Partikeltypus für die Analyse kleiner Moleküle, der bezüglich der Trenneffizienz vergleichbare Eigenschaften aufweist wie total-poröse Sub-2-micron-Partikel – allerdings bei nur 40...50 % deren Rückdruckes.

Poroshell-120-Säulen sind damit neben den RRHD-(Rapid Resolution High Definition-) und RRHT-(Rapid Resolution High Throughput-)Säulen, gepackt mit Sub-2-micron-Partikeln, eine weitere Säulenoption für die U/HPLC. Sie bieten den Vorteil, in klassischen, auf 400 bar beschränkten LC-Systemen ebenso eingesetzt werden zu können wie insbesondere für hochauflösende Chromatographie in LC-Systemen mit ausgedehnten Druckbereichen von 600 und 1200 bar.

Poroshell-120-Partikel (2,7 µm) besitzen einen nicht-porösen, undurchlässigen Kern von 1,7 µm, auf den in einem einzigen Prozessschritt eine poröse Schicht (Shell – 0,5 µm) aufgebracht wird (Bild 1). Sowohl der Kern als auch die poröse Schicht bestehen aus ultra-reinem und mechanisch extrem stabilem Kieselgel. Die Porengröße von 120 Angstrom macht die Phasen optimal einsetzbar für kleine Moleküle (pharmazeutische Wirkstoffe, Feinchemikalien, Pestizide, etc.) bis hin zu kleinen und mittleren Peptiden (Peptide Maps).

Die signifikant hohe Trenneffizienz bzw. Bodenzahl dieser 2,7 µm großen Partikel lässt sich durch die folgenden zwei Effekte erklären:

1. Optimierung des Massentransfers bei der Wechselwirkung des Probenmoleküls auf der Oberfläche der Umkehrphasen.

2. Reduktion der Mehrwegsdiffusion in der Säulenpackung.

Die dünne adressierbare, poröse Schicht, die den zu trennenden Probenmolekülen statt eines gesamten Partikels mit porösem Aufbau angeboten wird, sorgt für eine deutliche Reduktion des Diffusionsweges der Moleküle und reduziert damit die Zeit, die die Moleküle benötigen, um wieder zurück in den fließenden Eluenten zu gelangen. Dies reduziert die Peakverbreiterung und erhöht damit die Bodenzahl.

Teilporöse Partikel können mit deutlich engerer Partikelgrößenverteilung produziert werden, als dies für total poröse Materialien generell möglich ist. Damit lässt sich eine deutlich bessere Säulenpackung erzielen und Bandenverbreiterung der Peaks im Säulenbett selbst minimieren. Das Resultat sind Trenneffizienzen, die bei ca. 90 % der Sub-2-micron-Partikel liegen, aber bei deutlich geringerem Säulenrückdruck.

Poroshell-120-Phasen sind momentan in drei verschiedenen Selektivitätsoptionen verfügbar:1. Poroshell 120 EC C18.2. Poroshell 120 EC C8.3. Poroshell 120 StableBond C18.

Die physikalischen Daten der stationären Phasen sind in Tabelle 1 dokumentiert. Weitere Selektivitätsoptionen sind geplant.

Beladbarkeit
Die Beladbarkeit einer stationären Phase ist nicht nur in der präparativen Analytik gefragt, sondern auch im analytischen Bereich, denn Sie bestimmt die Linearität und den dynamischen Bereich einer Säule. In der Praxis heißt das, bis zu welcher Konzentration kleine Verunreinigungen neben hochkonzentrierten Hauptkomponenten nachgewiesen werden können.

Die Peakbreite einer Komponente wird als Indikator für die Beladbarkeit eingesetzt. Eine Säule ist dann überladen, wenn die Peakbreite in Abhängigkeit einer steigenden Injektionsmenge beginnt, größer zu werden. Die Bilder 3 und 4 zeigen, dass die Beladbarkeit der teilporösen Poroshell 120 vergleichbar der Beladbarkeit der klassischen, total porösen Materialien ist. Damit sind die Säulen unter identischen Bedingungen einsetzbar wie ihre total porösen Pendants.

Methodentransfer
Ein klassisches Beispiel für eine Methode zur Trennung von pharmazeutischen Wirkstoffen auf einer ZORBAX Eclispe Plus C18, 4,6 x 250 mm, gepackt mit total porösen 5 µm Partikeln, ist in Chromatogramm 1 dargestellt. Soll diese Methode auf U/HPLC übertragen oder eine neue Methode entwickelt werden, lässt sich das identische Trennergebnis unter Beibehaltung der Auflösung mit der neuen Poroshell 120 Phase EC C18 ohne spezielle Optimierungsmaßnahmen mit einer Säulendimension von 4,6 x 100 mm erzielen, also lediglich mit einer Längenreduktion. Die Auflösung des kritischen Peakpaares bleibt erhalten. Die Analysenzeit verkürzt sich signifikant von 30 Minuten auf 12 Minuten. Schrittweise Erhöhung der Flussrate unter Anpassung der Gradientensteilheit führen zu weiteren Analysenzeitreduktionen, bis zu letztlich weniger als 6 Minuten – weiterhin unter Erhalt der Auflösung.

Neben der Erhöhung der Flussrate sollten weitere Optimierungsschritte berücksichtigt werden, um die in der Säule erzielte Trenneffizienz bis zum Detektor aufrecht erhalten zu können:

Das Injektionsvolumen muss dem kleiner gewordenen Säulenvolumen angepasst werden und wie hier beispielhaft gezeigt von 5 µl auf 2 µl reduziert werden.Verzögerungs- und Dispersionsvolumen wie Verbindungskapillaren und Detektionszellen z.B. müssen minimiert werden, um Bandenverbreiterung außerhalb und insbesondere nach der Säule zu minimieren.Die Datenrate des Detektors muss aufgrund der kleinen Peakbreite (und damit hohen Trenneffizienz) erhöht werden, um sicherzustellen, dass der Peak durch genügend viele Datenpunkte aufgezeichnet wird.

Für UHPLC ausgelegte Instrumentierungen wie das Agilent 1290 Infinity LC-System integrieren bereits die beschrieben instrumentellen Optimierungen in der Standardausführung.

Fazit
Teilporöse Poroshell-120-Säulen sind in verschiedensten Applikationsbereichen der HPLC und UHPLC einsetzbar. Sie sind aufgrund ihres geringen Rückdrucks der ideale Partner für schnelle Chromatographie auf 400-bar-LC-Systemen und bieten in Kombination mit UHPLC-LC-Systemen mit ausgedehnten Druckbereichen (600 und 1200 bar) sowohl optimale Geschwindigkeit als auch maximale Trenneffizienz – selbst 250 mm lange Säulen von bis zu 80000 Böden/Meter sind nicht nur denkbar, sondern produzier- und einsetzbar.

Dr. Ulrike Jegle*) | LABO
Weitere Informationen:
http://www.labo.de/Labortechnik/Poroshell-120-Phasen_id_3341__dId_546290__app_510-31741_.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neues Verfahren für die Erkennung von Brustkrebs etabliert
06.12.2017 | Universitätsklinikum Gießen und Marburg GmbH

nachricht Mit Algorithmen Krankheiten erkennen
05.12.2017 | Hochschule Landshut

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie