Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Säulenoption für die U/HPLC

01.09.2010
Agilent Technologies, Waldbronn, Deutschland, E-Mail: Ulrike_Jegle@Agilent.com

Der Poroshell-120-Partikel ist ein neuartiger, teilporöser Partikeltypus für die Analyse kleiner Moleküle, der bezüglich der Trenneffizienz vergleichbare Eigenschaften aufweist wie total-poröse Sub-2-micron-Partikel – allerdings bei nur 40...50 % deren Rückdruckes.

Poroshell-120-Säulen sind damit neben den RRHD-(Rapid Resolution High Definition-) und RRHT-(Rapid Resolution High Throughput-)Säulen, gepackt mit Sub-2-micron-Partikeln, eine weitere Säulenoption für die U/HPLC. Sie bieten den Vorteil, in klassischen, auf 400 bar beschränkten LC-Systemen ebenso eingesetzt werden zu können wie insbesondere für hochauflösende Chromatographie in LC-Systemen mit ausgedehnten Druckbereichen von 600 und 1200 bar.

Poroshell-120-Partikel (2,7 µm) besitzen einen nicht-porösen, undurchlässigen Kern von 1,7 µm, auf den in einem einzigen Prozessschritt eine poröse Schicht (Shell – 0,5 µm) aufgebracht wird (Bild 1). Sowohl der Kern als auch die poröse Schicht bestehen aus ultra-reinem und mechanisch extrem stabilem Kieselgel. Die Porengröße von 120 Angstrom macht die Phasen optimal einsetzbar für kleine Moleküle (pharmazeutische Wirkstoffe, Feinchemikalien, Pestizide, etc.) bis hin zu kleinen und mittleren Peptiden (Peptide Maps).

Die signifikant hohe Trenneffizienz bzw. Bodenzahl dieser 2,7 µm großen Partikel lässt sich durch die folgenden zwei Effekte erklären:

1. Optimierung des Massentransfers bei der Wechselwirkung des Probenmoleküls auf der Oberfläche der Umkehrphasen.

2. Reduktion der Mehrwegsdiffusion in der Säulenpackung.

Die dünne adressierbare, poröse Schicht, die den zu trennenden Probenmolekülen statt eines gesamten Partikels mit porösem Aufbau angeboten wird, sorgt für eine deutliche Reduktion des Diffusionsweges der Moleküle und reduziert damit die Zeit, die die Moleküle benötigen, um wieder zurück in den fließenden Eluenten zu gelangen. Dies reduziert die Peakverbreiterung und erhöht damit die Bodenzahl.

Teilporöse Partikel können mit deutlich engerer Partikelgrößenverteilung produziert werden, als dies für total poröse Materialien generell möglich ist. Damit lässt sich eine deutlich bessere Säulenpackung erzielen und Bandenverbreiterung der Peaks im Säulenbett selbst minimieren. Das Resultat sind Trenneffizienzen, die bei ca. 90 % der Sub-2-micron-Partikel liegen, aber bei deutlich geringerem Säulenrückdruck.

Poroshell-120-Phasen sind momentan in drei verschiedenen Selektivitätsoptionen verfügbar:1. Poroshell 120 EC C18.2. Poroshell 120 EC C8.3. Poroshell 120 StableBond C18.

Die physikalischen Daten der stationären Phasen sind in Tabelle 1 dokumentiert. Weitere Selektivitätsoptionen sind geplant.

Beladbarkeit
Die Beladbarkeit einer stationären Phase ist nicht nur in der präparativen Analytik gefragt, sondern auch im analytischen Bereich, denn Sie bestimmt die Linearität und den dynamischen Bereich einer Säule. In der Praxis heißt das, bis zu welcher Konzentration kleine Verunreinigungen neben hochkonzentrierten Hauptkomponenten nachgewiesen werden können.

Die Peakbreite einer Komponente wird als Indikator für die Beladbarkeit eingesetzt. Eine Säule ist dann überladen, wenn die Peakbreite in Abhängigkeit einer steigenden Injektionsmenge beginnt, größer zu werden. Die Bilder 3 und 4 zeigen, dass die Beladbarkeit der teilporösen Poroshell 120 vergleichbar der Beladbarkeit der klassischen, total porösen Materialien ist. Damit sind die Säulen unter identischen Bedingungen einsetzbar wie ihre total porösen Pendants.

Methodentransfer
Ein klassisches Beispiel für eine Methode zur Trennung von pharmazeutischen Wirkstoffen auf einer ZORBAX Eclispe Plus C18, 4,6 x 250 mm, gepackt mit total porösen 5 µm Partikeln, ist in Chromatogramm 1 dargestellt. Soll diese Methode auf U/HPLC übertragen oder eine neue Methode entwickelt werden, lässt sich das identische Trennergebnis unter Beibehaltung der Auflösung mit der neuen Poroshell 120 Phase EC C18 ohne spezielle Optimierungsmaßnahmen mit einer Säulendimension von 4,6 x 100 mm erzielen, also lediglich mit einer Längenreduktion. Die Auflösung des kritischen Peakpaares bleibt erhalten. Die Analysenzeit verkürzt sich signifikant von 30 Minuten auf 12 Minuten. Schrittweise Erhöhung der Flussrate unter Anpassung der Gradientensteilheit führen zu weiteren Analysenzeitreduktionen, bis zu letztlich weniger als 6 Minuten – weiterhin unter Erhalt der Auflösung.

Neben der Erhöhung der Flussrate sollten weitere Optimierungsschritte berücksichtigt werden, um die in der Säule erzielte Trenneffizienz bis zum Detektor aufrecht erhalten zu können:

Das Injektionsvolumen muss dem kleiner gewordenen Säulenvolumen angepasst werden und wie hier beispielhaft gezeigt von 5 µl auf 2 µl reduziert werden.Verzögerungs- und Dispersionsvolumen wie Verbindungskapillaren und Detektionszellen z.B. müssen minimiert werden, um Bandenverbreiterung außerhalb und insbesondere nach der Säule zu minimieren.Die Datenrate des Detektors muss aufgrund der kleinen Peakbreite (und damit hohen Trenneffizienz) erhöht werden, um sicherzustellen, dass der Peak durch genügend viele Datenpunkte aufgezeichnet wird.

Für UHPLC ausgelegte Instrumentierungen wie das Agilent 1290 Infinity LC-System integrieren bereits die beschrieben instrumentellen Optimierungen in der Standardausführung.

Fazit
Teilporöse Poroshell-120-Säulen sind in verschiedensten Applikationsbereichen der HPLC und UHPLC einsetzbar. Sie sind aufgrund ihres geringen Rückdrucks der ideale Partner für schnelle Chromatographie auf 400-bar-LC-Systemen und bieten in Kombination mit UHPLC-LC-Systemen mit ausgedehnten Druckbereichen (600 und 1200 bar) sowohl optimale Geschwindigkeit als auch maximale Trenneffizienz – selbst 250 mm lange Säulen von bis zu 80000 Böden/Meter sind nicht nur denkbar, sondern produzier- und einsetzbar.

Dr. Ulrike Jegle*) | LABO
Weitere Informationen:
http://www.labo.de/Labortechnik/Poroshell-120-Phasen_id_3341__dId_546290__app_510-31741_.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

nachricht Cochlea-Implantat: Viele Formen funktionieren
10.08.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie