Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Röntgentechnik verbessert Kontrast von Weichgeweben

30.04.2015

Erkrankungen des Weichgewebes, beispielsweise Tumore, lassen sich mit normalen Röntgengeräten nur schwer erkennen. Im Röntgenlicht unterscheiden sich Tumor- und gesundes Gewebe kaum. Forscher der Technischen Universität München (TUM) haben nun an einer kompakten Synchrotronquelle eine Technik entwickelt, die zusätzlich zur Absorption auch Phasenverschiebung und Streuung der Röntgenstrahlen misst. So werden Gewebe erkennbar, die in herkömmlichen Röntgengeräten kaum sichtbar sind.

Röntgenaufnahmen sind aus dem medizinischen Alltag nicht mehr weg zu denken. Knochen beispielsweise absorbieren auf Grund ihres hohen Kalziumgehalts Röntgenstrahlen stark. So unterscheiden sie sich von Luft gefüllten Hohlräumen wie der Lunge und vom umliegenden Weichgewebe deutlich.


Beschleunigerstruktur der kompakten Synchrotronquelle

Bild: Klaus Achterhold / TUM


Röntgenaufnahme einer Maus: normales Röntgenbild (Absoprtion), Phasenkontrast- und Dunkelfeldaufnahme (vlnr)

Bild: Elena Eggl / TUM

Weichteile, Organe und Strukturen innerhalb von Organen wie Tumore, sind jedoch mit den heute in der Medizin eingesetzten Geräten kaum zu unterscheiden, da sie einen sehr ähnlichen Absorptionskoeffizienten besitzen.

Mit einer neuen Technologie ist es Wissenschaftlern um Franz Pfeiffer, Professor für Biomedizinische Physik am Physik-Department der TU München, nun erstmals gelungen, solche Weichgewebestrukturen sichtbar zu machen. Die Wissenschaftler nutzten dazu ein neue Art Röntgenquelle, die erst vor wenigen Jahren entwickelt wurde.

Die kompakte Synchrotronquelle

Im Gegensatz zu klassischen Röntgenröhren erzeugt ein Synchrotron stark gebündelte, monochromatische Röntgenwellen. Strahlen also, die alle die gleiche Energie und Wellenlänge besitzen. Röntgenstrahlen mit solchen Eigenschaften konnten bislang nur an großen Teilchenbeschleunigern erzeugt werden. Sie besitzen einen Umfang von mindestens einem Kilometer. Im Vergleich dazu ist die Kompakt-Synchrotronquelle nur etwa so groß wie ein Auto und passt in ein normales Labor.

„Monochromatische Strahlung ist viel besser geeignet, um neben der Absorption noch andere Parameter messen zu können“, erklärt Elena Eggl, Doktorandin am Lehrstuhl für Biomedizinische Physik. „Dies liegt daran, dass sie nicht wie das breit gefächerte Spektrum normaler Röntgenröhren zu Artefakten führt, die die Bildqualität verschlechtern.“

In den fokussierten Röntgenstrahl brachten die Wissenschaftler optische Gitter ein und konnten so zusätzlich zur Absorption der Röntgenstrahlen auch kleinste Phasenverschiebungen und Streuungen der Strahlen an der Probe messen. Die erste Phasenkonstrast-Tomografie an einer kompakten Synchrotronquelle war gelungen.

Komplementäre Informationen

Die mit der neuen Technik gewonnenen Phasenkontrast-, Dunkelfeld- und Absorptionsbilder ergänzen sich gegenseitig. Flüssigkeiten und Gewebe, die im Absorptionsbild klassischer Röntgenröhren nicht unterscheidbar und damit unsichtbar sind, kommen so plötzlich zum Vorschein. Der durch die neue Röntgentechnik stark verbesserte Weichteilkontrast könnte zudem helfen Tumore früher zu erkennen oder eine schnelle Diagnose – beispielsweise in einem medizinischen Notfall – zu ermöglichen.

Wie trennscharf die neue Technik ist, zeigt sich beim Vergleich von weißem und braunem Fettgewebe. „In einer Maus konnten wir nicht nur Herz, Leber und andere Organe sehr viel besser erkennen sondern sogar weißes von braunem Körperfett unterscheiden“, sagt Eggl.

Braunes Fettgewebe, das vor allem bei Neugeborenen auftritt, ist in der Lage die Verbrennung von gewöhnlichem weißem Fettgewebe zu fördern. Erst seit wenigen Jahren ist bekannt, dass auch Erwachsene noch braunes Fettgewebe besitzen. Das – so die Hoffnung einiger Forscher – reaktiviert werden und so Übergewichtigen beim Abnehmen helfen könnte.

Während diese Experimente an einem ersten prototypischen Aufbau bei der Lyncean Technologies Inc. in Kalifornien entstanden sind, wird derzeit auf dem Forschungscampus Garching eine deutlich verbesserte Kompaktsynchrotronquelle aufgebaut. Sie ist Teil des neuen „Center for Advanced Laser Applications“ (CALA), einem Gemeinschaftsprojekt der TU München und der Ludwig-Maximilians-Universität München (LMU). Hier wollen Eggl und Pfeiffer, in Zusammenarbeit mit Kollegen aus der Laserphysik der LMU und MPQ, die neue Röntgentechnik weiter verbessern.

Gefördert wurden die Forschungsarbeiten aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) über den Exzellenzcluster Munich-Centre for Advanced Photonics (MAP), des European Research Council (ERC, Starting Grant Nr. 240142), des National Institute of General Medical Sciences (USA, Grant R44-GM074437) und des National Center for Research Resources (USA, Grant R43-RR025730). Weitere Kooperationspartner waren das Helmholtz Zentrum NanoMikro am Karlsruher Institut für Technologie (KIT), die Universität Lund (Schweden) und die Lyncean Technologies Inc. (USA).

Publikation:

X-ray phase-contrast tomography with a compact laser-driven synchrotron source.
Elena Eggl, Simone Schleede, Martin Bech, Klaus Achterhold, Roderick Loewen, Ronald Ruth, und Franz Pfeiffer.
Proceedings of the National Academy of Sciences, PNAS, Early Edition, April 20, 2015. – DOI: 10.1073/pnas.1500938112
Link: http://www.pnas.org/content/early/2015/04/16/1500938112.abstract

Kontakt:

Prof. Dr. Franz Pfeiffer
Lehrstuhl für Biomedizinische Physik
Department für Physik / IMETUM
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12551 (Büro) – +49 89 289 12552 (Sekretariat)
E-Mail: franz.pfeiffer@tum.de - Internet: http://www.e17.ph.tum.de/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten