Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Bilder vom Gehirn – echt scharf

22.12.2011
Wenn ein Arzt seinem Patienten in den Kopf schauen will, verwendet er dazu häufig die Magnetresonanztomographie (MRT).

Diese Technologie hat in den letzten Jahren große Fortschritte gemacht, die Bilder wurden immer weiter verfeinert. Allerdings bringt die feinere Auflösung auch ein schwächeres Signal-Rauschverhältnis mit sich. Damit die Bilder trotzdem scharf sind, haben Mathematiker des WIAS ein Verfahren entwickelt, das Ungenauigkeiten glättet, dabei aber Strukturen nicht verwischt.


... scharf.
Abb: WIAS, unter Verwendung von Daten von A. Anwander und R. Heidemann, MPI for Human cognitive and Brain Sciences


Mathematische Methoden machen ein verrauschtes Bild...
Abb: WIAS, unter Verwendung von Daten von A. Anwander und R. Heidemann, MPI for Human cognitive and Brain Sciences

Wasser ist fast überall im Gehirn vorhanden. Wenn man für jeden Punkt im Gehirn weiß, in welche Richtungen sich dieses Wasser bewegen kann, lässt sich daraus auf die Struktur schließen. Kann das Wasser an einem Punkt nicht in eine bestimmte Richtung fließen, muss es dort eine feste Strukturgrenze geben, zum Beispiel einen Nervenstrang. Wasser kann sich lokal entlang solcher Stränge bewegen. Nach diesem Prinzip funktioniert die diffusionsgewichtete MRT (dMRT).

Grundsätzlich wird bei der MRT ein starkes permanentes Magnetfeld angelegt.

Die Kerne der Moleküle, zum Beispiel das Proton im Wasserstoff, werden mit Radiowellen energetisch angeregt. Der dann gemessene Relaxationsprozess ist das eigentliche Nutzsignal des Verfahrens. Zusätzlich gibt es bei der dMRT weitere Magnetfeldgradienten. Dadurch wird das Verfahren sensitiv für die Diffusionsfähigkeit des Wassers in eine bestimmte Richtung, und diese ist groß, sofern ihm der Weg nicht durch eine Strukturgrenze versperrt ist. Nacheinander werden nun Messungen mit Magnetfeldgradienten verschiedener Richtungen durchgeführt. Die möglichen Strömungsrichtungen des Wassers lassen sich dann zu einem Gesamtbild der Struktur des Gehirns zusammensetzen.

Beim Messen wird das Gehirn in kleine Volumen-Elemente eingeteilt, in denen jeweils die Diffusionsfähigkeit gemessen wird. Je feiner die Einteilung, desto kleiner ist jeder einzelne solcher „Voxel“ – die dreidimensionale Entsprechung zu Pixeln in der Ebene. An der Grenze des Machbaren hat ein Voxel etwa eine Kantenlänge von 0,8 Millimetern. Für derart kleine Voxel ist das gemessene Signal deutlich schwächer. So erhält man zwar ein feineres Bild, die Informationen der einzelnen Punkte sind jedoch ungenauer, es gibt ein stärkeres „Rauschen“. Dr. Karsten Tabelow vom WIAS erläutert: „Die Daten, die wir analysieren, bewegen sich in den Grenzbereichen des Realisierbaren. Noch feiner kann im Moment niemand auflösen.“

Um trotz des Rauschens ein scharfes Bild zu erhalten, glätten die Mathematiker das Bild. Dabei hilft ihnen, dass sich die Strukturen in benachbarten Voxeln meist ähneln. Dr. Jörg Polzehl schränkt ein: „Es gibt aber auch scharfe Strukturgrenzen, die wir nicht verwischen dürfen.“ Methoden, die das leisten, heißen adaptiv. Dabei analysieren die Mathematiker die Daten in einem iterativen Verfahren. „Damit finden wir heraus, wo wir mitteln können und wo nicht“, erläutert Karsten Tabelow.

Die Methoden zur Bild- und Signalverarbeitung entwickeln die WIAS-Mathematiker in einem MATHEON-Projekt gemeinsam mit Kollegen aus den Neurowissenschaften. Die Messungen stammen von Partnern wie dem Weill Cornel Medical College in New York und der Uniklinik Münster. Dort werden mit den am WIAS entwickelten Methoden auch Messungen von Patienten mit neurologischen Erkrankungen untersucht. Die Frage ist, welche Stellen im Gehirn sich im Verlauf der Krankheit typischerweise verändern.

Ende November fand im WIAS ein Workshop zu Statistik und Neuroimaging statt, den das WIAS gemeinsam mit dem MATHEON und dem Bernstein Center for Computational Neuroscience an der Charité organisiert hat. Experten unterschiedlicher Fachrichtungen haben sich ausgetauscht und über gemeinsames Vorgehen beraten. Jörg Polzehl und Karsten Tabelow haben dabei mit Kollegen vom Max-Planck-Institut für Neurowissenschaften in Leipzig ein gemeinsames Projekt vereinbart, bei dem es um die Analyse von hochaufgelösten dMRT-Daten gehen wird.

Kontakt
Weierstraß-Instituts für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin (WIAS)
Dr. Torsten Köhler
Tel. (030) 20372 582
E-Mail torsten.koehler@wias-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.wias-berlin.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie