Münstersche Wissenschaftler machen akute Entzündungen im Gehirn bei Multipler Sklerose sichtbar

Forscher des Exzellenzclusters "Cells in Motion" machten Entzündungen im Gehirn bei Mäusen (links) und bei Multiple-Sklerose-Patienten (rechts) sichtbar. Dazu markierten sie bestimmte Enzyme (MMPs). Nachdruck mit Genehmigung des Verlags aus: Gerwien und Hermann et al., Sci. Transl. Med. 8, 364ra152 (2016) 9. November 2016

Auf Patienten übertragen, was man zuvor in der tierexperimentellen Untersuchung festgestellt hat – das ist das große Ziel vieler in der Biomedizin arbeitender Wissenschaftler. Gelungen ist es Forschern des Exzellenzclusters „Cells in Motion“ (CiM) der Universität Münster:

Sie konnten erstmals akute Entzündungen im Gehirn bei Patienten mit Multipler Sklerose (MS) bildgebend nachweisen. Dabei arbeiteten Experten verschiedener Disziplinen über mehrere Jahre in einer einzigartigen Form zusammen und kombinierten bildgebende Verfahren von der Mikroskopie bis zur Ganzkörperbildgebung.

Die Folgen einer Entzündung im Gehirn lassen sich bereits mit einem klinisch etablierten Verfahren, der Magnet-Resonanz-Tomographie, darstellen. Zusätzlich die Entzündung selbst sichtbar zu machen, könnte zukünftig dazu beitragen, bei Patienten mit Multipler Sklerose genauere Diagnosen zu stellen und Therapien besser überwachen sowie zielgerichteter einsetzen zu können. Die Studie ist aktuell in der anerkannten Fachzeitschrift „Science Translational Medicine“ erschienen.

Multiple Sklerose macht Patienten meist in Schüben erheblich zu schaffen. Bei dieser Autoimmunerkrankung richten sich Immunzellen, also Zellen des körpereigenen Abwehrsystems, gegen den Organismus, den sie eigentlich schützen sollen. Sie überwinden dazu die sogenannte Blut-Hirn-Schranke, also die Wand der Blutgefäße im Gehirn, und greifen dann das Zentrale Nervensystem an.

Die CiM-Forscher nutzten erstmals bestimmte Enzyme, die Matrix-Metalloproteinasen (MMPs), um die MS-typischen Entzündungen im Gehirn darzustellen. In einer Vorstudie hatten Biologen und Biochemiker um CiM-Sprecherin Prof. Lydia Sorokin festgestellt, dass diese Enzyme eine entscheidende Rolle spielen. Sie hatten Mäuse mit einer der Multiplen Sklerose ähnlichen Erkrankung untersucht und herausgefunden: MMPs ermöglichen Immunzellen, die Blut-Hirn-Schranke zu überwinden und ins Gehirn zu wandern, wo sie Entzündungen auslösen.

Um die Enzyme im Organismus zu markieren und in Bildern sichtbar zu machen, entwickelten Nuklearmediziner und Chemiker um CiM-Co-Koordinator Prof. Michael Schäfers einen „Spürstoff“, im Fachjargon Tracer genannt. Diese chemische Substanz spürt die gesuchten Enzyme im Körper auf und bindet sich an sie. Die Chemiker koppelten einen Fluoreszenz-Farbstoff an den MMP-Tracer, dessen Lichtsignale sich mit optischen Verfahren messen lassen. Über das Tracersignal konnten die Forscher zunächst bei Mäusen auf die Aktivität der Enzyme schließen. „Wir stellten fest, dass die Beobachtung der MMPs präzise Informationen darüber liefert, wo Immunzellen die Blut-Hirn-Schranke durchwandern und wo Entzündungen im Gehirn vorkommen“, sagt Molekularmedizinerin Dr. Hanna Gerwien.

Erste Fallstudien bei Patienten

In ersten Untersuchungen gelang es den Wissenschaftlern, das Verfahren auf den Menschen zu übertragen. Da die Lichtsignale des fluoreszierenden Tracers die dickeren Gewebeschichten beim Menschen nicht durchdringen können, wandelten die Forscher den Tracer um und hängten statt des Fluoreszenz-Farbstoffs einen radioaktiven Signalgeber an. Dessen Strahlung lässt sich mit einem speziellen Verfahren, der Positronen-Emissions-Tomographie (PET), messen und sichtbar machen. Nuklearmediziner und Neurologen des münsterschen Exzellenzclusters, die gleichzeitig am Universitätsklinikum tätig sind, führten nun erste Fallstudien bei Patienten mit Multipler Sklerose durch. Das Ergebnis: Bei Patienten mit akutem MS-Schub reicherte sich der Tracer deutlich an, und zwar schon bevor im betroffenen Bereich mit dem traditionellen Verfahren der Magnet-Resonanz-Tomographie eine Schädigung der Blut-Hirn-Schranke zu sehen war.

„Es war schon etwas Besonderes, dass man bei einem Patienten untermauern konnte, was man zuvor in der tierexperimentellen Grundlagenforschung festgestellt hatte“, sagt Dr. Sven Hermann, Nuklearmediziner und Experte für Kleintierbildgebung. „Das ist doch der Wunsch eines jeden Wissenschaftlers.“ Auch die Erwartung, dass der Tracer sich nach anti-entzündlicher Therapie weniger anreicherte, wurde erfüllt.

Das Verfahren wird nicht in der klinischen Praxis angewendet. Bei der Untersuchung handelte es sich um eine Pilotstudie. Diese wurde vom Exzellenzcluster „Cells in Motion“, dem Sonderforschungsbereich 656 „Molekulare kardiovaskuläre Bildgebung“ und dem Sonderforschungsbereich TR-128 „Multiple Sklerose“ der Universität Münster unterstützt.

Redaktion:

Svenja Ronge
Pressereferentin / Forschungsredakteurin im Exzellenzcluster „Cells in Motion“
Tel.: +49 251 83-49310
svenja.ronge@uni-muenster.de

Originalpublikation:

Gerwien H*, Hermann S*, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schäfers M*, Sorokin L*. Imaging Matrix Metalloproteinase Activity in Multiple Sclerosis as a Specific Marker of Leukocyte Penetration of the Blood-Brain Barrier. Science Translational Medicine, DOI: 10.1126/scitranslmed.aaf8020 (*equal contribution)

http://www.uni-muenster.de/Cells-in-Motion/de/newsviews/2016/11-10.html Detaillierte Bildbeschreibung und weitere Informationen auf der CiM-Webseite
https://www.uni-muenster.de/Cells-in-Motion/de/ Exzellenzcluster „Cells in Motion“
http://stm.sciencemag.org/content/8/364/364ra152 Originalpublikation
http://www.sciencemag.org/ „Science“ Homepage

Media Contact

Dr. Christina Heimken idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer