Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das MRT der Zukunft: Bildgebende Diagnostik mit Xenon

05.12.2013
Bei der Entwicklung einer neuartigen Methode für bildgebende Diagnostik ist Berliner Forschern ein weiterer Durchbruch gelungen.

Mit Hilfe von Xenon-Biosensoren sollen künftig auch winzige krankmachende Details sichtbar werden – Krebszellen oder arteriosklerotische Ablagerungen könnte man auf diese Weise frühzeitig aufspüren. Die Ergebnisse sind in der aktuellen Online-Ausgabe der Fachzeitschrift Angewandte Chemie veröffentlicht.

Weltweit arbeitet eine Handvoll Forschergruppen an dem Verfahren, mit ihrer jüngsten Veröffentlichung haben sich Leif Schröder und seine Mitarbeiter vom Leibniz-Institut für Molekulare Pharmakologie (FMP) sowie sein Kollege Christian Freund von der Freien Universität Berlin erneut an die Spitze gesetzt: Erstmals ist es ihnen gelungen, mit Hilfe von Xenon-Gas Aufnahmen von speziell markierten lebenden Zellen zu erzeugen.

Es handelt sich dabei um eine Variante der Magnetresonanztomographie (MRT), die in ihrer konventionellen Form aus dem klinischen Alltag nicht mehr wegzudenken ist. Doch anstelle der gewohnten Bilder, die die Gewebestrukturen in Grautönen zeigen, soll die neue Technik einmal bunte Bilder liefern, auf denen man unterschiedliche krankhafte Zelltypen oder Ablagerungen erkennen kann.

Die MRT nutzt den Kernspin von Atomkernen, die in starken Magnetfeldern mit Radiowellen in Wechselwirkung treten. Anders als beim herkömmlichen Verfahren messen die Forscher am FMP aber nicht die Resonanz von Wasserstoff-Atomen, die im menschlichen Körper zwar allgegenwärtig sind, aber nur schwache Signale aussenden. Stattdessen verwenden sie „hyperpolarisiertes“ Xenon, dessen Atomkerne weit stärkere Signale liefern – ähnlich einer sehr hellen Glühbirne.

Bei künftigen klinischen Untersuchungen müssten die Patienten das ungiftige Edelgas Xenon zunächst einatmen, sodass es sich im Körper verteilt.

Die FMP-Forscher haben zudem Moleküle entwickelt, die durch ihre besondere Käfigstruktur Xenon-Atome einfangen, entsprechend einer passenden Fassung für die Glühbirne. Die Xenon-Käfige kann man wiederum an maßgeschneiderte Bio-Sensoren koppeln, die sich gezielt an krankmachende Zellen oder Ablagerungen im Körper anheften. Auf diese Weise erhält man aus genau diesen Bereichen Signale, und ein Computer errechnet daraus ein Bild.

Bereits im vergangenen Jahr haben die FMP-Forscher unter Beweis gestellt, dass sie die technischen Tücken der Methode inzwischen so weit im Griff haben, dass hochaufgelöste Bilder möglich sind. Nun haben sie die Technik erstmals erfolgreich an Bindegewebszellen von Mäusen getestet, die mittels der entwickelten Xenon-Käfige zum Leuchten gebracht wurden.

Die Zellen wurden dazu in einer eigens konstruierten Apparatur innerhalb des MRT-Gerätes am Leben gehalten und mit Nährmedium überspült, das mit dem Xenon gesättigt war. Dies entspricht dem Blutkreislauf eines Patienten, der das eingeatmete Edelgas zu den Organen transportiert. Mittels Radiowellen und eines starken Magnetfeldes erhielten die Wissenschaftler nun Signale von den Xenonatomen, welche mittels der Käfig-Moleküle innerhalb der Zellen eingefangen wurden - die Glühbirne findet ihre Fassung und beginnt zu leuchten, und zwar je nach molekularer Umgebung bei unterschiedlicher Wellenlänge. In den so erzeugten Bildern kann man bei einer Auflösung von einem halben Millimeter zwischen Bereichen von Zellen mit oder ohne Xenon-Käfigen unterscheiden.

„Unser Ziel ist, dass wir mit Hilfe verschiedener Käfige Biosensoren bauen, die eines Tages sogar den Aufbau eines Tumors aus unterschiedlichen Zelltypen darstellen können“, sagt Leif Schröder. Auf dieser Grundlage könnte man dann besser entscheiden, welche Therapie im individuellen Fall die wirksamste ist. „Wir haben zwei Jahre an dem neuen Versuchsaufbau getüftelt, bis es endlich geklappt hat“ so sein Doktorand Stefan Klippel, der die Apparatur entworfen hat. „Als nächsten denken wir über Tierversuche nach und arbeiten an einem Krebs-spezifischen Sensor, in Zusammenarbeit mit der University of California in Berkeley.“

(Epub ahead of print) DOI:10.1002/anie.201307290

Silke Oßwald | idw
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wachkoma: System soll Patienten helfen, sich zu verständigen
24.05.2017 | Universität Bielefeld

nachricht Premiere einer verblüffenden Technik
23.05.2017 | Deutsches Herzzentrum Berlin

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten