Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MRI-Signale - Die perfekte Welle

19.02.2009
Forschenden der ETH und Universität Zürich ist eine Entdeckung gelungen, welche die Magnetresonanztomographie revolutionieren könnte.

Die Magnetresonanz im menschlichen Körper konnte durch propagierende Wellen angeregt und abgebildet werden. Das neue Verfahren, das kontrastreichere und höher aufgelöste Bilder liefert, wird heute im Fachmagazin "Nature" vorgestellt.

Ein Kollege wollte eine Hand mit dem Magnetresonanztomographie-Verfahren (MRI) abbilden, aber leider war das Bild undeutlich. Es zeigte nicht nur Signale aus nächster Nähe sondern auch solche, die aus einiger Entfernung stammen mussten. Das brachte den Doktoranden David Brunner auf die Idee, MRI-Signale gezielt durch sich ausbreitende Wellen anzuregen und zu empfangen.

Wellen, die sich ausbreiten

Nach dem Lehrbuch werden MRI-Signale am besten durch sogenannte Nahfeldkopplung gemessen. Dies hat den Nachteil, dass die Detektoren eng am Körper angebracht werden müssen, was oft als unangenehm empfunden wird. Die Nahfeldmethode entspricht dem Stand der Technik bei klinischen MRI-Geräten, die heute meist eine Feldstärke von 1,5 Tesla und eine Resonanzfrequenz von 64 Megahertz (MHz) haben. Stärkere Magnete und damit höhere Frequenzen liefern zwar im Prinzip kontrastreichere und höher aufgelöste Bilder, aber Anregung und Detektion werden problematisch. Zum einen werden die Detektoren bei höheren Frequenzen vermehrt durch den Körper gestört. (Man kennt das Problem von Radioantennen: Objekte in der Nähe von Antennen verändern den Empfang.) Zum andern neigen traditionelle Detektoren dazu, bei hohen Frequenzen stehende Wellen auszubilden. Das Resultat sind Knotenpunkte, in deren Umgebung das Bild ausgelöscht wird. Da bei höherer Fre-quenz und damit kürzerer Wellenlänge mehr Knotenpunkte entstehen, konnten grössere Strukturen bis jetzt bei hohen Feldstärken nicht vollständig abgebildet werden.

Klaas Prüssmann, Professor am Institut für Biomedizinische Technik der ETH und UZH und sein Doktorand David Brunner sind zusammen mit weiteren Forschern ganz neue Wege gegangen. Sie nutzten für das bildgebende Verfahren eine 35 Tonnen schwere Magnetröhre, die MRI-Signalen genügend Raum gibt, um sich in Form elektromagnetischer Wellen auszubreiten. Sich ausbreitende - oder propagierende - Wellen verhalten sich grundsätzlich anders als stehende Wellen. Sie kommen ohne Knotenpunkte aus und erlauben dadurch eine gleichmässigere Ausleuchtung. Und sie haben die Fähigkeit, Energie und Information über grosse Distanzen zu transportieren. Um von diesen Vorteilen zu profitieren, mussten die Forscher einen neuartigen Detektor bauen, der wie eine Antenne dafür ausgelegt ist, Signale fernab ihrer Quelle zu empfangen.

Ideale Bedingungen in Zürich

Die Wissenschaftler gingen ausserdem daran, die idealen Bedingungen für pro-pagierende Wellen zu schaffen und hatten dafür die besten Voraussetzungen. In ihrem stärksten Forschungssystem, einer MRI-Anlage mit 7 Tesla Feldstärke am Institut für Biomedizinische Technik, erreichen die Resonanzsignale eine Frequenz von 300 MHz. Dank der entsprechend geringen Wellenlänge ist die Patientenöffnung mit einem Durchmesser von knapp 60 cm gerade gross genug, um als Wellenleiter zu funktionieren. So gelang es den Wissenschaftlern, im MRI-Experiment propagierende Wellen zu erzeugen, die Objekte durchdrangen und die ganze Röhre nahezu verlustfrei durchliefen. Mit ihren neu entworfenen Detektoren konnten die Wissenschaftler die Signale der Atomkerne bis zu einem Abstand von drei Metern empfangen.

Vollständig abbilden

Es ist auch bereits gelungen, Körperteile von Versuchspersonen aus einer Distanz von fast einem Meter abzubilden. Wie erhofft haben die ersten Aufnahmen von Unterschenkel und Fuss eines Probanden eine wesentlich bessere Abdeckung als bisher. Jüngste Resultate deuten zudem an, dass auch der menschliche Kopf durch propagierende Wellen vollständig ausgeleuchtet werden kann. Die Vorteile hoher Feldstärken - höhere Auflösung und stärkere Kontraste - werden dadurch besser nutzbar.

"Dass man MRI-Signale mit einer Antenne und in so grossem Abstand vom Körper empfängt, war bis anhin undenkbar", sagt Prof. Prüssmann. Da Sender und Empfänger in einiger Entfernung platziert werden können, engen sie den Patienten weniger ein. Die propagierenden Wellen sind aber nicht nur für medizinische Bildgebung interessant sondern könnten auch ganz neue Anwendungen ermöglichen. Denkbar wäre zum Beispiel, dass damit viele Materialproben oder Versuchstiere auf einmal untersucht werden können.

Weitere Informationen:
ETH Zürich
Prof. Dr. Klaas P. Prüssmann
Inst. f. Biomedizinische Technik
Tel +41 44 632 66 96
pruessmann@biomed.ee.ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch
http://www.cc.ethz.ch/media/picturelibrary/news/MRI_propagierende_Wellen

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie