Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopserie für das Fluoreszenz-Imaging

01.06.2010
Neue Perspektiven für die Forschung: Mit der aktuellen xcellence-Serie stellt Olympus gleich eine ganze Reihe extrem vielseitiger Mikroskopsysteme vor. Sie erlauben nicht nur hochentwickelte Lebendzell-Techniken wie Hochgeschwindigkeits-Imaging in Echtzeit, TIRFM & HILO (cell^TIRF), Photokontrolle – wie zum Beispiel FRAP, FLIP & Photoaktivierung (cell^FRAP) – sowie konfokale Laser-Spinning-Disc-Mikroskopie (cell^SPIN). Mehr noch: Die Modelle der neuen Serie sind mit zahlreichen innovativen Leistungsmerkmalen ausgestattet, die den Forschern völlig neue Möglichkeiten bieten.

Die Systemreihe Olympus xcellence für die Bildaufnahme lebender Zellen wurde entwickelt, um anspruchsvollste Fluoreszenz-Imaging-Techniken für den Anwender deutlich zu vereinfachen und gleichzeitig neue Maßstäbe in der optischen Bildgebung zu setzen.

Der Realtime-Controller ermöglicht ein so extrem schnelles, paralleles Komponenten-Management, dass komplexeste Experimente ohne Zeitverzögerung erstellt werden können. Zur xcellence-Software gehört der sogenannte „Experiment-Manager“, ein universelles Planungs- und Ausführungsinstrument mit logischem, einfachem „Drag-and-Drop“-Experimentaufbau.

Olympus xcellence bietet mit dem Fluoreszenz-Beleuchtungssystem MT20 das ultimative Instrument für das Imaging lebender Zellen über längere Zeitabschnitte. Es vereinigt in einem Gerät eine stabilisierte Quecksilber- oder Xenon/Quecksilber-Lichtquellensteuerung und lässt extrem schnelle Wechsel beim Filterrad, Abschwächer und Shutter zu. Die neue xcellence-Software offeriert zudem die hochentwickelten Kontrolloptionen des Olympus Data Bus (ODB) für ein größeres Hardware-Spektrum inklusive Laser-Linking für schnelles Umschalten und die präzise Kontrolle von Laserlinien. Darüber hinaus erweitern die mehrfachen, extrem schnellen (Mikrosekunden), bidirektionalen TTL-Kommunikationsausgänge die Möglichkeiten zusätzlicher interaktiver Hardware-Kommunikation.

cell^TIRF
Das neue Modul für die interne Totalreflektions-Fluoreszenz-Mikroskopie, cell^TIRF, verfügt über vier Laserlinien mit separater motorisierter Winkelkontrolle für eine synchronisierte Akquisition mit identischer Eindringtiefe. Mithilfe der xcellence-Software ist der Anwender in der Lage, ganz einfach den Einfallswinkel oder die Eindringtiefe einzustellen sowie Experimente mit variierenden Eindringtiefen durchzuführen. Zusammen mit dem breiten Angebot an TIRFM-Objektiven wird so ein neues Maß an Präzision in der Multi-Color-TIRFM erreicht. Dank des umfassenden Know-hows von Olympus im Bereich Optik kann cell^TIRF auch für highly inclined and laminated optical (HILO) sheet Mikroskopie eingesetzt und mit Epifluoreszenz, FRAP und Laser-Spinning-Disk-Techniken kombiniert werden.
cell^FRAP
Das System cell^FRAP bietet laut Pressemitteilung das Modernste im Bereich der Photokontrolltechnologie und ermöglicht anspruchsvolle FRAP, iFRAP, FLIP, FLAP sowie Photoaktivierung und Photokonversion. Das Laser-Scanning-Modul kann zwei separate Laserlinien oder einen Laser-Combiner aufnehmen und wird über einen separaten Lichtweg zur Kamera und zur Fluoreszenzbeleuchtung in das Mikroskop eingefügt. Damit ist zum einen gewährleistet, dass sich FRAP mit Epifluoreszenz, TIRFM und Laser-Spinning-Disk-Techniken vollständig kombinieren lässt. Zum anderen werden so simultanes Imaging und Photomanipulation sowie mikrosekundenschnelles Umschalten ermöglicht. Dank vollständiger Softwaresteuerung können Basis-FRAP-Techniken auf Knopfdruck durchgeführt und selbst anspruchsvollere Techniken mühelos komplett kontrolliert werden. Darüber hinaus erlaubt „Pattern Bleaching“ die Simulation von Fluorescent Speckle Microscopy (FLM) und „Fire on Click“ die manuelle Auslösung des FRAP-Lasers per Mausklick.
cell^SPIN
Olympus cell^SPIN wurde als konfokales Laser-Spinning-Disk-System mit höchster Emissionseffizienz entwickelt, um besonders probenschonendes und schnelles Live-Cell-Imaging zu ermöglichen. Das Anregungslicht wird durch die Verwendung von leistungsstarken Lasern mit Feinsteuerung des Beleuchtungsbereichs und neuer Laser-Combiner-Technologie mit erheblich gesteigerter Kopplungseffizienz extrem verstärkt. Damit ist sichergestellt, dass so viel Licht wie möglich die Probe beleuchtet. Das System überzeugt darüber hinaus mit optimierten Disks für die perfekte Konfokalität mit unterschiedlichen Objektiven, der vollen Kontrolle über die Disk-Geschwindigkeit und einer Höchstgeschwindgkeit von 5600 min-1. Damit ist das Olympus cell^SPIN in der Lage, bis zu 367 konfokale Bilder pro Sekunde zu generieren.

| LABO
Weitere Informationen:
http://www.labo.de/Mikroskopie-und-Bildauswertung/Mikroskopsystemreihe-excellence_id_3345__dId_513830__app_510-31753_.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neuer Ansatz zur Behandlung von Mitralklappen-Erkrankungen: Erste Patientendaten
22.08.2017 | Universitätsspital Bern

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie