Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Licht! – für die Medizin

26.03.2013
PET-Scan, CT und MRT sind in der Diagnostik fast schon Standard. Hochentwickelt und sehr aufwändig. Obwohl leistungsfähig und kostengünstig, sind laseroptische Diagnosemethoden bislang weit weniger verbreitet. Das will FAMOS ändern.

Es gibt Erkrankungen, wie etwa Krebs, zu deren präziser Diagnose und Therapiekontrolle aufwändige bildgebende Methoden und sogar Probenentnahmen notwendig sind. Geht es jedoch um die Untersuchungen von oberflächlichen Geweben, wie der Haut, der Netzhaut oder Darmgewebe, könnten optische Methoden künftig die gewünschte Klarheit bringen. Kostengünstiger, nicht invasiv, ohne ionisierende Strahlung, ohne Kontrastmittel – nur mit energiereichem Laserlicht.


FAMOS - Trapezlaser für die medizinische Diagnostik

Im Rippenwellenleiter (RW section) wird Strahlung hoher Qualität erzeugt, die im Trapezteil (TA section) verstärkt wird – der Trapezlaser vereint damit gute Strahlqualität mit höchster Leistung.
© FBH/D. Feise

Um das Functional Anatomical Molecular Optical Screening voranzubringen haben sich 17 Partner zum EU-Projekt FAMOS zusammengefunden. Darunter Hersteller von Lasern und Medizintechnik, Forscher der Universitäten Wien, St. Andrews (Schottland), des Londoner University Colleges, des Weizmann-Institutes (Israel), der TU Dänemark und des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) in Berlin-Adlershof.

Eine Schlüsseltechnologie gibt es bereits: OCT, die Optische Kohärenztomographie. Damit lassen sich Strukturen, die einige Millimeter im Gewebe liegen, präzise abbilden. Das dafür verwendete weiße Laserlicht entsteht, wenn man eine spezielle Glasfaser mit einem Femtosekunden-Laser bestrahlt. Diese Laser erzeugen so viel Wärme, dass sie mit Wasser gekühlt werden müssen. Die Geräte sind deshalb nicht mobil, recht klobig und außerdem noch so kompliziert, dass nur ein Fachmann sie bedienen kann. Hier setzt das Projekt an, die Lichtquellen sollen kleiner und kompakter werden.

„Unsere Aufgabe am FBH ist es, einen Halbleiterlaser von sehr guter Strahlqualität zu entwickeln. Bei den Kollegen in Dänemark wird er dann frequenzverdoppelt – die Wellenlänge also halbiert“, skizziert Bernd Sumpf, FAMOS-Projektleiter am FBH, das Projekt. Und mit diesem Laser pumpt ein Industriepartner in Wien schließlich den Femtosekunden-Titan-Saphir-Laser, der dann die eigentliche OCT-Lichtquelle anregt. Wenn alles wie geplant funktioniert, wird Luft zum Kühlen ausreichen, ein kleiner Ventilator wie im Computer. Dadurch werden die Geräte auf ein Fünftel ihrer bisherigen Größe schrumpfen, entsprechend billiger und mobil einsetzbar.

Aber was heißt eigentlich „einen Laser pumpen“? Laser brauchen eine so genannte Besetzungsinversion: Damit sie einen Lichtstrahl gewünschter Wellenlänge emittieren, müssen auf dem höheren (angeregten) Energieniveau mehr Elektronen sein als auf dem unteren, auf das sie unter Emission von Photonen herabfallen. „Stimulierte Emission“ nannte Albert Einstein dies bereits 1917. „Und diesen Prozess, die Elektronen anzuregen, nennt man Pumpen“, erklärt Sumpf. Das geht elektrisch, über Gasentladung (wie in einer Leuchtstoffröhre) oder eben optisch. Sumpfs Team tüftelt für FAMOS an einem so genannten Trapezlaser. Durch einen raffinierten Trick vereint er exzellente Strahlleistung mit hochpräziser Fokussierbarkeit.

Ein Titan-Saphir-Laser kann im Spektralbereich zwischen 400 Nanometer (nm) und 550 nm angeregt werden. Bisher wurden dazu meist wassergekühlte Festkörperlaser bei einer Emissionswellenlänge von 532 nm genutzt. „Wir haben zur Anregung eine kürzere Wellenlänge von 515 nm gewählt“, erklärt Sumpf. Das Ziel: 10 Watt optische Leistung bei 1030 nm zu erzeugen. In einem speziellen Kristall wird die Wellenlänge auf 515 nm halbiert. Die gesamte Effizienz soll dabei so hoch sein, dass man mit einer Luftkühlung auskommt. Und das macht die „Pumpe“ – den winzigen FBH-Laser – zum Kernstück der neuen Technologie.

Petra Immerz
Communication & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News
Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Niederspannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 255 Mitarbeiter und hat einen Etat von 22 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics