Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live-Schaltung zum schlagenden Herzen

30.08.2010
Max-Planck-Wissenschaftler haben mit der Magnetresonanz-Tomografie Organe und Gelenke in Echtzeit "gefilmt"

Für Patienten, die mit der Magnetresonanz-Tomografie (MRT) untersucht werden, gilt die Devise "bitte still halten". Nur so entstehen klare Aufnahmen, die eine Diagnose ermöglichen. Bilder bewegter Organe und Gelenke waren mit der MRT bislang kaum möglich. Göttinger Max-Planck-Forscher haben jetzt die Zeit für eine Bildaufnahme noch einmal entscheidend verkürzt - auf nur eine fünfzigstel Sekunde. Damit lassen sich erstmals Bewegungen von Organen und Gelenken live "filmen": Augen- und Kieferbewegungen ebenso wie die Beugung des Kniegelenks oder das schlagende Herz. Das neue MRT-Verfahren könnte wichtige Informationen bei Erkrankungen der Gelenke und des Herzens liefern und Patienten manche Untersuchung erleichtern. (NMR in Biomedicine 2010, Journal of Cardiovascular Magnetic Resonance 2010)


Echtzeit-MRT des Herzens mit einer Messzeit von 33 Millisekunden pro Bild und 30 Bildern pro Sekunde. Die räumliche Auflösung beträgt 1,5 Millimeter in der Bildebene (Schichtdicke 8 Millimeter). Die acht aufeinanderfolgenden Aufnahmen zeigen die Bewegung des Herzmuskels einer gesunden Testperson für eine Dauer von 0,264 Sekunden während eines einzigen Herzschlags. Die Bilder reichen von der systolischen Phase (Pfeil oben links: Kontraktion des Herzmuskels) bis zur diastolischen Phase (Pfeil unten rechts: Entspannung). Das helle Signal in den Herzkammern ist das Blut. Bild: Frahm

Was noch bis in die 1980er-Jahre mehrere Minuten dauerte, geht heute innerhalb von Sekunden: die Aufnahme von Schnittbildern unseres Körpers mithilfe der Magnetresonanz-Tomografie (MRT). Möglich machte dies die FLASH (fast low angle shot)-Methode, die von den Göttinger Wissenschaftlern Jens Frahm und Axel Haase am Max-Planck-Institut für biophysikalische Chemie entwickelt wurde. Die FLASH-Technik revolutionierte die Magnetresonanz-Tomografie und machte sie zu einem diagnostischen Standard-Verfahren in der Medizin. Die MRT-Untersuchung ist für Patienten völlig schmerzfrei und zudem äußerst schonend. Da die Technik mit Magnetfeldern und Radiowellen arbeitet, sind die untersuchten Personen - anders als beim Röntgen - keiner Strahlenbelastung ausgesetzt. Doch für die Untersuchung schnell bewegter Organe und Gelenke ist das Verfahren derzeit immer noch zu langsam. Um beispielsweise Herzbewegungen zu verfolgen, müssen die Messungen mit dem Elektrokardiogramm (EKG) synchronisiert werden, während der Patient den Atem anhält. Anschließend werden die Daten aus unterschiedlichen Herzschlägen zu einem Film zusammengesetzt.

In Zukunft erweiterte Diagnostik bei Erkrankungen

Den Forschern um Jens Frahm, Leiter der gemeinnützigen Biomedizinischen NMR Forschungs GmbH, ist es jetzt gelungen, die Bildaufnahmetechnik ein weiteres Mal wesentlich zu beschleunigen. Das neue MRT-Verfahren von Jens Frahm, Martin Uecker und Shuo Zhang reduziert die Messzeit eines Bildes bis auf eine fünfzigstel Sekunde (20 Millisekunden) und erlaubt erstmals "Live-Mitschnitte" bewegter Gelenke und Organe ganz ohne Artefakte. Die Bewegung des Kiefergelenks lässt sich damit ebenso "filmen" wie das Sprechen oder die Herzbewegungen. "Ein Echtzeit-Film vom schlagenden Herzen erlaubt es, die Pumpbewegungen des Herzmuskels und den resultierenden Blutfluss direkt zu verfolgen - Herzschlag für Herzschlag und ohne, dass der Patient die Luft anhalten muss", erklärt Frahm. Mit diesem Verfahren könne die Diagnostik bei Erkrankungen wie Herzinfarkt oder Herzmuskelschwäche verbessert werden, so die Erwartung der Wissenschaftler. Als weiteres Einsatzgebiet sind minimal-invasive Eingriffe denkbar, die künftig unter MRT statt wie bisher unter Röntgen-Kontrolle erfolgen könnten. "Wir müssen aber wie bei FLASH erst lernen, die Echtzeit-MRT medizinisch zu nutzen", sagt Frahm. "Auch für die Ärzte ergeben sich neue Anforderungen und notwendige Erprobungsphasen. Die technischen Fortschritte müssen in Untersuchungsprotokolle ‚übersetzt’ werden, die die jeweiligen medizinischen Fragestellungen optimal beantworten."

Weniger ist mehr: Beschleunigung durch bessere Bildberechnung

Für den Durchbruch zu Messzeiten, die nur noch Bruchteile einer Sekunde betragen, mussten mehrere Entwicklungen erfolgreich miteinander verknüpft werden. So verwendeten die Wissenschaftler zwar erneut die FLASH-Technik, dieses Mal aber mit einer radialen Kodierung der Ortsinformation, welche die MRT-Aufnahmen gegenüber Bewegungen weitestgehend unempfindlich macht. Um die Messzeiten weiter zu verkürzen, war Mathematik gefragt. "Es werden erheblich weniger Daten aufgenommen als für die Berechnung eines Bildes normalerweise notwendig sind. Ein von uns neu entwickeltes mathematisches Verfahren macht es möglich, dass wir aus den eigentlich unvollständigen Daten ein aussagekräftiges Bild berechnen können", so Frahm. Im Extremfall lässt sich so aus nur fünf Prozent der Daten eines normalen MRT-Bildes ein vergleichbar gutes Bild berechnen - entsprechend einer 20-fach kürzeren Messzeit. Die Göttinger Wissenschaftler haben damit die MRT-Messzeit seit Mitte der 1980er-Jahre insgesamt um den Faktor 10000 beschleunigt.

Während die schnelle Messtechnik der Göttinger Forscher direkt mit heutigen MRT-Geräten realisiert werden kann, sind ausreichend schnelle Computer zur Bildberechnung derzeit noch ein Engpass. Der Physiker Martin Uecker erklärt: "Der Rechenaufwand ist gigantisch. Wenn wir das Herz für nur eine Minute in Echtzeit untersuchen, entstehen aus einer Datenmenge von zwei Gigabyte beispielsweise 2000 bis 3000 Bilder." Uecker hat das mathematische Verfahren daher so ausgelegt, dass es in parallel zu berechnende Schritte zerlegt wird. Diese aufwendigen Berechnungen erfolgen mit schnellen Grafikkarten, die ursprünglich für Computerspiele und dreidimensionale Visualisierungen entwickelt wurden. "Für eine Minute Film benötigt unser Rechnersystem derzeit rund 30 Minuten", so Uecker. Es wird daher einige Zeit dauern, bis die MRT-Geräte über ausreichend schnelle Rechner verfügen, die es erlauben, die Bilder direkt während der Untersuchung zu berechnen und live darzustellen. Um den Weg ihrer Innovation in die Praxis möglichst kurz zu halten, kooperieren die Göttinger Forscher eng mit der Firma Siemens Healthcare.

Originalveröffentlichung:

Martin Uecker, Shuo Zhang, Dirk Voit, Alexander Karaus, Klaus-Dietmar Merboldt, Jens Frahm
Real-time MRI at a resolution of 20 ms.
NMR in Biomedicine 23, doi:10.1002/nbm.1585 (27. August 2010)
Weitere Informationen erhalten Sie von:
Prof. Dr. Jens Frahm, Biomedizinische NMR Forschungs GmbH
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1721
E-Mail: jfrahm@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: crotte@gwdg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops