Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser für minimalinvasive Gehirn-Operationen entwickelt

25.05.2012
Forscher vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) waren an der Entwicklung eines kompakten Festkörperlasersystems für die minimalinvasive Chirurgie beteiligt, das Gehirngewebe mit einer bisher unerreichten Präzision schneiden kann. Der neue Laser ist das Ergebnis eines interdisziplinären EU-Projektes, an dem Partner aus sieben europäischen Ländern mitwirkten.

Die Idee zu dem Laser geht auf ein Experiment aus dem Jahr 1999 zurück: An der Vanderbilt University in Nashville (TN), USA, entfernten Wissenschaftler einer Patientin einen Gehirntumor mit einem Freie-Elektronen-Laser bei einer Wellenlänge von 6.45 Mikrometern.


Ablation von Gewebe mit der neuen “all-solid-state” Strahlungsquelle bei 6.45 Mikrometer basierend auf Frequenzkonversion, im Vergleich mit zwei klinischen Lasern: ein 2.79 Mikrometer Erbium Festkörperlaser und ein 10.6 Mikrometer Karbondioxid Gaslaser. Fotos: University Medical Center Utrecht

Diese Wellenlänge im mittleren infraroten Spektralbereich war zuvor in vielen vorläufigen Versuchen mit weichem Gewebe als die geeignetste für solche Operationen identifiziert worden. Dass die Methode dennoch nicht in die Operationssäle Einzug hielt, hat einen einfachen Grund: Freie-Elektronen-Laser sind enorm große und teure Beschleuniger-basierte Strahlungsquellen, die in keine Klinik passen würden.

Nur mit ihnen ließ sich aber bislang diese Wellenlänge erzeugen, weil sie in einem breiten Spektralbereich „frei durchstimmbar“ sind, das heißt es lässt sich fast jede beliebige Wellenlänge einstellen. Festkörper- oder Gaslaser hingegen haben eine genau definierte Wellenlänge, welche vom optischen Verstärkermedium des Lasers abhängt. In der Laserchirurgie kommen derzeit Wellenlängen von etwa 2, 2.8 oder 10.6 Mikrometern zum Einsatz.

„Kompakte und zuverlässige Festkörperlaser für diese Wellenlänge im mittleren infraroten Bereich gab es bislang überhaupt nicht“, sagt Dr. Valentin Petrov vom MBI, Koordinator des Konsortiums. Der neue Laser generiert nun kurze Lichtimpulse bei genau 6.45 Mikrometern und das bei einer Wiederholrate von 100 bis 200 Hz, was die geplante mittlere Leistung von mehr als 1 Watt gewährleistet. Der Laser verursacht im Gewebe weniger Schaden als herkömmliche Laser, weil die Energie des Laserlichts sowohl durch Wasser als auch von nichtwässrigen Komponenten (Proteine) absorbiert wird. Die Eindringtiefe beträgt bei dieser Wellenlänge wenige Mikrometer, was etwa der Größe von Zellen entspricht - mit den bislang in der Chirurgie verwendeten Lasern waren solch präzise Schnitte nicht möglich.

2008 war das von der EU geförderte Projekt MIRSURG (Mid-Infrared Solid-State Laser Systems for Minimally Invasive Surgery) mit dem Ziel gestartet, die Lücke bei dioden-gepumpten Festkörperlasern im mittleren infraroten Spektralbereich um 6.45 Mikrometer zu schließen. Auf dem MIRSURG-Abschlusstreffen im Frühjahr 2012 in Saint-Louis, Frankreich, präsentierte das Projektteam nun einen ziemlich kompakten „all-solid-state“ Prototypen, der auf eine Tischplatte passt. Die gewünschte Wellenlänge erzeugten die Forscher durch nichtlineare Frequenzkonversion. Dabei wird ein Laserstrahl bei etwa 2 Mikrometern Wellenlänge über nichtlineare optische Kristalle ins mittlere Infrarot umgewandelt.

Die Herausforderung für die Forscher war es, die für die Ablation von weichem Gewebe am besten geeigneten und technisch machbaren Parameter gleichzeitig zu realisieren. Es gelang ihnen, die gewünschte Wellenlänge mit einer Impulsenergie von mehr als 5 Millijoule und einer Impulsdauer von etwa 30 Nanosekunden zu kombinieren, und das bei einer guten Fokussierbarkeit. Die Wiederholrate, Langzeitstabilität und Zuverlässigkeit des gesamten Lasersystems scheinen ideal für praktische chirurgische Anwendungen geeignet zu sein.

Die MIRSURG-Projektpartner wollen den neuen Laser weiteroptimieren und seine Eigenschaften für das Schneiden von weichem Gewebe besser charakterisieren sowie, eventuell in einem Folgeprojekt, echte chirurgische Eingriffe mit einem Festkörperlasersystem demonstrieren. „Ich hoffe, dass solche Laser irgendwann in jedem spezialisierten Operationssaal stehen werden “, sagt Petrov.

Partner im Projekt MIRSURG:
• Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Koordinator)
• Thales Research and Technology, Frankreich
• Institute of Photonic Sciences, Spanien
• Lisa Laser Products, Deutschland
• French-German Research Institute of Saint-Louis, Frankreich
• Bright Solutions, Italien
• Royal Institute of Technology, Schweden
• Euroscan Instruments, Belgien
• The University Medical Center Utrecht, Niederlande

www.mirsurg.eu

Kontakt:
Dr. Valentin Petrov, Tel.: 030 6392 1281
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
E-Mail: petrov@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mirsurg.eu
http://www.mbi-berlin.de
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mikroskopie der Zukunft
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Markerfreies Verfahren zur Schnelldiagnose von Krebs
22.05.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics