Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser für minimalinvasive Gehirn-Operationen entwickelt

25.05.2012
Forscher vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) waren an der Entwicklung eines kompakten Festkörperlasersystems für die minimalinvasive Chirurgie beteiligt, das Gehirngewebe mit einer bisher unerreichten Präzision schneiden kann. Der neue Laser ist das Ergebnis eines interdisziplinären EU-Projektes, an dem Partner aus sieben europäischen Ländern mitwirkten.

Die Idee zu dem Laser geht auf ein Experiment aus dem Jahr 1999 zurück: An der Vanderbilt University in Nashville (TN), USA, entfernten Wissenschaftler einer Patientin einen Gehirntumor mit einem Freie-Elektronen-Laser bei einer Wellenlänge von 6.45 Mikrometern.


Ablation von Gewebe mit der neuen “all-solid-state” Strahlungsquelle bei 6.45 Mikrometer basierend auf Frequenzkonversion, im Vergleich mit zwei klinischen Lasern: ein 2.79 Mikrometer Erbium Festkörperlaser und ein 10.6 Mikrometer Karbondioxid Gaslaser. Fotos: University Medical Center Utrecht

Diese Wellenlänge im mittleren infraroten Spektralbereich war zuvor in vielen vorläufigen Versuchen mit weichem Gewebe als die geeignetste für solche Operationen identifiziert worden. Dass die Methode dennoch nicht in die Operationssäle Einzug hielt, hat einen einfachen Grund: Freie-Elektronen-Laser sind enorm große und teure Beschleuniger-basierte Strahlungsquellen, die in keine Klinik passen würden.

Nur mit ihnen ließ sich aber bislang diese Wellenlänge erzeugen, weil sie in einem breiten Spektralbereich „frei durchstimmbar“ sind, das heißt es lässt sich fast jede beliebige Wellenlänge einstellen. Festkörper- oder Gaslaser hingegen haben eine genau definierte Wellenlänge, welche vom optischen Verstärkermedium des Lasers abhängt. In der Laserchirurgie kommen derzeit Wellenlängen von etwa 2, 2.8 oder 10.6 Mikrometern zum Einsatz.

„Kompakte und zuverlässige Festkörperlaser für diese Wellenlänge im mittleren infraroten Bereich gab es bislang überhaupt nicht“, sagt Dr. Valentin Petrov vom MBI, Koordinator des Konsortiums. Der neue Laser generiert nun kurze Lichtimpulse bei genau 6.45 Mikrometern und das bei einer Wiederholrate von 100 bis 200 Hz, was die geplante mittlere Leistung von mehr als 1 Watt gewährleistet. Der Laser verursacht im Gewebe weniger Schaden als herkömmliche Laser, weil die Energie des Laserlichts sowohl durch Wasser als auch von nichtwässrigen Komponenten (Proteine) absorbiert wird. Die Eindringtiefe beträgt bei dieser Wellenlänge wenige Mikrometer, was etwa der Größe von Zellen entspricht - mit den bislang in der Chirurgie verwendeten Lasern waren solch präzise Schnitte nicht möglich.

2008 war das von der EU geförderte Projekt MIRSURG (Mid-Infrared Solid-State Laser Systems for Minimally Invasive Surgery) mit dem Ziel gestartet, die Lücke bei dioden-gepumpten Festkörperlasern im mittleren infraroten Spektralbereich um 6.45 Mikrometer zu schließen. Auf dem MIRSURG-Abschlusstreffen im Frühjahr 2012 in Saint-Louis, Frankreich, präsentierte das Projektteam nun einen ziemlich kompakten „all-solid-state“ Prototypen, der auf eine Tischplatte passt. Die gewünschte Wellenlänge erzeugten die Forscher durch nichtlineare Frequenzkonversion. Dabei wird ein Laserstrahl bei etwa 2 Mikrometern Wellenlänge über nichtlineare optische Kristalle ins mittlere Infrarot umgewandelt.

Die Herausforderung für die Forscher war es, die für die Ablation von weichem Gewebe am besten geeigneten und technisch machbaren Parameter gleichzeitig zu realisieren. Es gelang ihnen, die gewünschte Wellenlänge mit einer Impulsenergie von mehr als 5 Millijoule und einer Impulsdauer von etwa 30 Nanosekunden zu kombinieren, und das bei einer guten Fokussierbarkeit. Die Wiederholrate, Langzeitstabilität und Zuverlässigkeit des gesamten Lasersystems scheinen ideal für praktische chirurgische Anwendungen geeignet zu sein.

Die MIRSURG-Projektpartner wollen den neuen Laser weiteroptimieren und seine Eigenschaften für das Schneiden von weichem Gewebe besser charakterisieren sowie, eventuell in einem Folgeprojekt, echte chirurgische Eingriffe mit einem Festkörperlasersystem demonstrieren. „Ich hoffe, dass solche Laser irgendwann in jedem spezialisierten Operationssaal stehen werden “, sagt Petrov.

Partner im Projekt MIRSURG:
• Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Koordinator)
• Thales Research and Technology, Frankreich
• Institute of Photonic Sciences, Spanien
• Lisa Laser Products, Deutschland
• French-German Research Institute of Saint-Louis, Frankreich
• Bright Solutions, Italien
• Royal Institute of Technology, Schweden
• Euroscan Instruments, Belgien
• The University Medical Center Utrecht, Niederlande

www.mirsurg.eu

Kontakt:
Dr. Valentin Petrov, Tel.: 030 6392 1281
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
E-Mail: petrov@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mirsurg.eu
http://www.mbi-berlin.de
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Neuer Ansatz zur Behandlung von Mitralklappen-Erkrankungen: Erste Patientendaten
22.08.2017 | Universitätsspital Bern

nachricht Filterschutz fürs Gehirn: Weniger Schlaganfälle bei Herzklappenersatz-OP
17.08.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Chaos bei der Zellteilung – wie Chromosomenfehler in Krebszellen entstehen

23.08.2017 | Biowissenschaften Chemie

Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

23.08.2017 | Förderungen Preise

Winzige Spurenverunreinigungen, enorme Auswirkungen

23.08.2017 | Biowissenschaften Chemie