Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs: "Angelrute" bringt Gehirntumoren den Tod

17.02.2014
Glioblastome ohne OP entfernt und an zugänglicheren Ort gebracht

Fischen nach Krebszellen - so könnte man das Verfahren beschreiben, das Wissenschaftler an der Emory University School of Medicine entwickelt haben.


Gehirn-Scan: Tumore werden ausgetrickst
Foto: pixelio.de, Rieke

Eine winzige Rute holt im Gehirn Tumorzellen ein und führt sie aus dem Gehirn hinaus zum Absterben. Glioblastome gelten als die am häufigsten auftretende und aggressivste Art von Gehirnkrebs bei Erwachsenen. Die Erkrankung ist tödlich und nur sehr schwer zu operieren. Verantwortlich dafür sind die Größe der Tumore und ihre unzugängliche Lage.

Sechs Millimeter langer "Kescher"

Das Team um Ravi Bellamkonda entwickelte nicht noch wirksamere Medikamente, um die Krebszellen im Gehirn abzutöten, sondern überlegte sich, ob die Tumore nicht an einen zugänglicheren Ort bewegt werden könnten. Glioblastomzellen bewegen sich im Gehirn und binden sich an Nerven und Blutgefäße. Um ihren Weg zu verändern, wurde eine Rute aus Polymeren entwickelt, die rund sechs Millimeter lang ist.

Im Inneren der Rute wurde eine dünne, rund zehn Mikrometer dicke Folie angebracht, die die Form von Nerven und Blutgefäßen nachahmt. Laut dem Wissenschaftler scheinen die Zellen diese Form zu mögen. Aus diesem Grund sind keine weiteren Chemikalien oder Proteine erforderlich. Am oberen Ende der Rute ist ein Tropfen Gel angebracht, der ein Medikament enthält, das die Zellen der Glioblastome abtötet.

Tumorzellen halten die Rute für Nerven oder Blutgefäße, binden sich an sie und werden am Ende abgetötet. Laut Bellamkonda kommt der Tumor so zu den Medikamenten und nicht umgekehrt. Um das Verfahren zu testen, implantierten die Forscher menschliche Glioblastomzellen in die Gehirne von Ratten. Sie setzten die Rute in den Tumor ein. Das Gel befand sich dabei etwas über der Oberfläche des Schädels. Nach 15 Tagen hatte sich der Großteil der Tumorzellen entlang der Rute weiter bewegt und ihr Ende gefunden.

Auf sämtliche Krebsarten anwendbar

Laut dem Wissenschaftler verkleinerte sich der Tumor, der nicht nur die Rute nach oben gelangte um fast 90 Prozent. "Wir haben sehr genau überprüft, dass wir dem Tumor nicht nur eine andere Möglichkeit des Wachstums gegeben haben. Es hat sich aber gezeigt, dass wir den Tumor von einem Ort an den anderen bewegen konnten."

Das Verfahren kann einen Patienten nicht vollständig von Krebs befreien. Bellamkonda geht jedoch davon aus, dass ein inoperabler Tumor damit in einen Bereich bewegt werden kann, der näher an der Oberfläche des Gehirns liegt, wo er entfernt werden kann. Es ist auch denkbar, dass der Tumor auf eine Größe schrumpft, die keinen Schaden mehr anrichtet.

Wie Nature Materials http://nature.com/nmat berichtet, sind die ins Gehirn eingeführten Ruten so winzig, dass sie zu keinen Störungen führen sollten. Das Team hat das Verfahren im Labor auch an isolierten Brustkrebszellen und Prostatakrebs getestet. Die Wissenschaftler hoffen einem NewScientist-Bericht nach darauf, dass es auch bei vielen anderen Arten von langsam wachsenden Tumoren eingesetzt werden kann.

Video: http://www.youtube.com/watch?v=7zf7RflYZrk

Michaela Monschein | pressetext.redaktion
Weitere Informationen:
http://med.emory.edu

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken
28.03.2017 | Technische Universität Braunschweig

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten