Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

«Instrumentenflug» zum Innenohr

16.03.2017

Chirurgen und Ingenieure des Inselspitals und des ARTORG Center for Biomedical Engineering Research der Universität Bern haben gemeinsam einen hochpräzisen Operationsroboter für die Cochlea-Implantation entwickelt. Die Forschungsarbeit zur weltweit ersten, erfolgreich durchgeführten roboterassistierten Cochlea-Implantation wird am 15. März in der Fachzeitschrift «Science Robotics» publiziert.

Um ein Cochlea-Implantat in das Ohr eines tauben Patienten einzubringen, muss ein Hals-, Nasen-, Ohrenchirurg hinter der Ohrmuschel manuell einen sehr exakten Zugang durch den Schädelknochen bis ins Innenohr herstellen. Einerseits muss dabei ausreichend Knochen entfernt werden, um die notwendige Sicht auf das Innenohr zu gewährleisten, andererseits müssen Verletzungen von im Knochen verlaufenden Nerven vermieden werden.


CI-Roboter im Einsatz: Gelb: Gesichtsnerv; Orange: Geschmacksnerv; Hellblau: Cochlea; Dunkelblau: Hintere Wand äusserer Gehörgang; Lila: Gehörknöchelchen; Grün: Geplante Trajektorie; Grau: Bohrstück.

ARTORG Center for Biomedical Engineering Research, Universität Bern


Roboter ausgerichtet auf die geplante Trajektorie auf dem Phantommodell.

ARTORG Center for Biomedical Engineering Research, Universität Bern

Die Implantatelektrode wird danach in die Hörschnecke (Cochlea) eingebracht und ermöglicht dem Patienten das Hören. Ziel des Berner Forschungsprojektes war es, zu untersuchen ob neuartige, computer- und robotergestützte Ansätze zu einem verbesserten und reproduzierbareren Operationsergebnis beitragen können.

Instrumente führen den Chirurgen in die Hörschnecke

Zunächst wird in Computertomographiebildern des Patienten ein Tunnel von hinter dem Ohr bis direkt in die Cochlea definiert. Der Durchmesser dieses Tunnels beträgt beim Eingang 2.5mm, in der Cochlea noch 1.8mm. Er führt unmittelbar zwischen dem Gesichtsnerv und dem Geschmacksnerv hindurch. Die Implantatelektrode kann dadurch in einem definierten Eintrittswinkel in die Hörschnecke eingeführt werden. Diese geplante Trajektorie wird dann während der Operation mit einem Roboter gebohrt.

Auf Grund der engen Platzverhältnisse im Schädel und Innenohr muss der Roboter auf wenige Zehntelmillimeter genau bohren können. Für den Chirurgen gibt es hier keine direkten visuellen Kontrollmöglichkeiten. Um beim Bohrvorgang die nötige Sicherheit zu gewährleisten, sind deshalb dezidierte und voneinander unabhängige Sicherheitsmechanismen erforderlich, die in diesem Verfahren erstmalig zur Anwendung kommen. Dies ist vergleichbar mit dem Instrumentenflugprinzip eines modernen Flugzeugs, das auch bei fehlenden Sichtverhältnissen eine sichere Flugzeugführung gewährleistet.

Dreifaches Sicherheitsdispositiv

Im Robotersystem greifen dazu drei Sicherheitssysteme ineinander: Ein extrem genaues Kamerasystem misst die Positionen von Roboter und Patient und steuert darüber die Roboterbewegungen. Über ein Kraftmess-System werden die Bohrkräfte gemessen und mit der erwarteten Knochenstärke verglichen. Zudem sendet ein Nervenstimulationssystem schwache elektrische Impulse in den Knochen und misst die entstehenden Rückkopplungen. «Nur aus allen Informationen zusammen können wir ableiten, ob der Roboter auf dem vorgeplanten Weg ist», erklärt Prof. Stefan Weber vom ARTORG Center for Biomedical Engineering Research der Universität Bern.

Translation in den OP durch multidisziplinäres Team

«Diese erste roboterassistierte Cochlea-Implantation ist das Ergebnis einer Dekade gemeinsamer interdisziplinärer Forschung von Ingenieuren, Chirurgen, Neuroradiologen, Neurologen und Audiologen», sagt Prof. Marco Caversaccio von der Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie am Inselspital Bern. Die Technologie durchlief nach der Entwicklung mehrere vorklinische Testphasen, um die Systeme vor ihrer Einführung in den Operationssaal zu prüfen.

«Unser Schritt in die Klinik ist ein erfolgreiches Beispiel der Translation von Forschungsarbeiten», so Caversaccio. In den Folgestudien des Projekts – wie zum Beispiel Anwendungen zur Wirkstoffdosierung im Innernohr – sollen neue biomedizinische Ergebnisse mit Hilfe des Schweizer Nationalen Zentrums für Translationale Medizin und Unternehmertum, sitem-insel AG gefördert werden (http://www.sitem-insel.ch).

Angaben zur Publikation:

Stefan Weber, Kate Gavaghan, Wilhelm Wimmer, Tom Williamson, Nicolas Gerber, Juan Anso, Brett Bell, Arne Feldmann, Christoph Rathgeb, Marco Matulic, Manuel Stebinger, Daniel Schneider, Georgios Mantokoudis, Olivier Scheidegger, Franca Wagner, Martin Kompis, Marco Caversaccio: Instrument flight to the inner ear, Science Robotics, 15. März 2017, doi: 10.1126/scirobotics.aal4916
http://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.aal4916

Weitere Informationen:

https://youtu.be/9tP-_gibFmI
http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/index...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics