Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

«Instrumentenflug» zum Innenohr

16.03.2017

Chirurgen und Ingenieure des Inselspitals und des ARTORG Center for Biomedical Engineering Research der Universität Bern haben gemeinsam einen hochpräzisen Operationsroboter für die Cochlea-Implantation entwickelt. Die Forschungsarbeit zur weltweit ersten, erfolgreich durchgeführten roboterassistierten Cochlea-Implantation wird am 15. März in der Fachzeitschrift «Science Robotics» publiziert.

Um ein Cochlea-Implantat in das Ohr eines tauben Patienten einzubringen, muss ein Hals-, Nasen-, Ohrenchirurg hinter der Ohrmuschel manuell einen sehr exakten Zugang durch den Schädelknochen bis ins Innenohr herstellen. Einerseits muss dabei ausreichend Knochen entfernt werden, um die notwendige Sicht auf das Innenohr zu gewährleisten, andererseits müssen Verletzungen von im Knochen verlaufenden Nerven vermieden werden.


CI-Roboter im Einsatz: Gelb: Gesichtsnerv; Orange: Geschmacksnerv; Hellblau: Cochlea; Dunkelblau: Hintere Wand äusserer Gehörgang; Lila: Gehörknöchelchen; Grün: Geplante Trajektorie; Grau: Bohrstück.

ARTORG Center for Biomedical Engineering Research, Universität Bern


Roboter ausgerichtet auf die geplante Trajektorie auf dem Phantommodell.

ARTORG Center for Biomedical Engineering Research, Universität Bern

Die Implantatelektrode wird danach in die Hörschnecke (Cochlea) eingebracht und ermöglicht dem Patienten das Hören. Ziel des Berner Forschungsprojektes war es, zu untersuchen ob neuartige, computer- und robotergestützte Ansätze zu einem verbesserten und reproduzierbareren Operationsergebnis beitragen können.

Instrumente führen den Chirurgen in die Hörschnecke

Zunächst wird in Computertomographiebildern des Patienten ein Tunnel von hinter dem Ohr bis direkt in die Cochlea definiert. Der Durchmesser dieses Tunnels beträgt beim Eingang 2.5mm, in der Cochlea noch 1.8mm. Er führt unmittelbar zwischen dem Gesichtsnerv und dem Geschmacksnerv hindurch. Die Implantatelektrode kann dadurch in einem definierten Eintrittswinkel in die Hörschnecke eingeführt werden. Diese geplante Trajektorie wird dann während der Operation mit einem Roboter gebohrt.

Auf Grund der engen Platzverhältnisse im Schädel und Innenohr muss der Roboter auf wenige Zehntelmillimeter genau bohren können. Für den Chirurgen gibt es hier keine direkten visuellen Kontrollmöglichkeiten. Um beim Bohrvorgang die nötige Sicherheit zu gewährleisten, sind deshalb dezidierte und voneinander unabhängige Sicherheitsmechanismen erforderlich, die in diesem Verfahren erstmalig zur Anwendung kommen. Dies ist vergleichbar mit dem Instrumentenflugprinzip eines modernen Flugzeugs, das auch bei fehlenden Sichtverhältnissen eine sichere Flugzeugführung gewährleistet.

Dreifaches Sicherheitsdispositiv

Im Robotersystem greifen dazu drei Sicherheitssysteme ineinander: Ein extrem genaues Kamerasystem misst die Positionen von Roboter und Patient und steuert darüber die Roboterbewegungen. Über ein Kraftmess-System werden die Bohrkräfte gemessen und mit der erwarteten Knochenstärke verglichen. Zudem sendet ein Nervenstimulationssystem schwache elektrische Impulse in den Knochen und misst die entstehenden Rückkopplungen. «Nur aus allen Informationen zusammen können wir ableiten, ob der Roboter auf dem vorgeplanten Weg ist», erklärt Prof. Stefan Weber vom ARTORG Center for Biomedical Engineering Research der Universität Bern.

Translation in den OP durch multidisziplinäres Team

«Diese erste roboterassistierte Cochlea-Implantation ist das Ergebnis einer Dekade gemeinsamer interdisziplinärer Forschung von Ingenieuren, Chirurgen, Neuroradiologen, Neurologen und Audiologen», sagt Prof. Marco Caversaccio von der Universitätsklinik für Hals-, Nasen- und Ohrenkrankheiten, Kopf- und Halschirurgie am Inselspital Bern. Die Technologie durchlief nach der Entwicklung mehrere vorklinische Testphasen, um die Systeme vor ihrer Einführung in den Operationssaal zu prüfen.

«Unser Schritt in die Klinik ist ein erfolgreiches Beispiel der Translation von Forschungsarbeiten», so Caversaccio. In den Folgestudien des Projekts – wie zum Beispiel Anwendungen zur Wirkstoffdosierung im Innernohr – sollen neue biomedizinische Ergebnisse mit Hilfe des Schweizer Nationalen Zentrums für Translationale Medizin und Unternehmertum, sitem-insel AG gefördert werden (http://www.sitem-insel.ch).

Angaben zur Publikation:

Stefan Weber, Kate Gavaghan, Wilhelm Wimmer, Tom Williamson, Nicolas Gerber, Juan Anso, Brett Bell, Arne Feldmann, Christoph Rathgeb, Marco Matulic, Manuel Stebinger, Daniel Schneider, Georgios Mantokoudis, Olivier Scheidegger, Franca Wagner, Martin Kompis, Marco Caversaccio: Instrument flight to the inner ear, Science Robotics, 15. März 2017, doi: 10.1126/scirobotics.aal4916
http://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.aal4916

Weitere Informationen:

https://youtu.be/9tP-_gibFmI
http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/index...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Bypass – Lebensbrücke für das Herz; keine Angst vor der Herz-Operation
21.09.2017 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein stabiles magnetisches Bit aus drei Atomen

21.09.2017 | Informationstechnologie

Bald bessere Akkus?

21.09.2017 | Energie und Elektrotechnik

Evolution der schnellsten Fallen im Pflanzenreich

21.09.2017 | Biowissenschaften Chemie