Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochgenau dosieren mit Piezoaktoren

01.10.2010
Leiter „Markt und Produkte“ bei Physik Instrumente (PI) GmbH & Co. KG.
Redaktionsbüro Stutensee.
Viele Anwendungsgebiete verlangen heute nach Verfahren, die feine Tröpfchen mit Volumina im Mikro- oder Nanoliterbereich produzieren. Typische Beispiele finden sich bei Tintenstrahldruckern aus dem Privat- oder Bürobereich ebenso wie bei industriellen Großformatdruckern, die beispielsweise in der Produktion von Flachbildschirmen eingesetzt werden. Weitere Applikationen gibt es beim Mikro-Löten oder bei den so genannten Mikrodispensern, die in Medizintechnik und Biotechnologie unterschiedlichste Flüssigkeiten mit höchster Präzision dosieren.

So unterschiedlich wie die Branchen, in denen exakt dosiert werden muss, sind letztendlich auch die zur Tröpfchenbildung eingesetzten Geräte. Eine entscheidende Gemeinsamkeit jedoch verbindet sie: Für die zur präzisen und reproduzierbaren Dosierung der kleinen Mengen erforderlichen hochgenauen Bewegungsabläufe gelten meist Piezoaktoren als erste Wahl.

Vom Inkjet-Drucker bis zum Mikrodispenser
Verfahren, die feine Tröpfchen mit Volumina im Mikro- oder Nanoliterbereich produzieren, arbeiten heute oft kontaktlos, d.h., die Tröpfchen werden aus einer Düse ausgestoßen und treffen danach auf das Substrat, möglichst ohne ihre Form einzubüßen. Ein großer Markt dafür bildet die bei professionellen, großflächigen Druckern übliche Inkjet-Technologie. Die hochwertigen Farben werden als Tröpfchen mit genau definierten Volumina im Bereich zwischen 1…100 Picolitern aus Düsen auf das Papier geschleudert, um die einzelnen Punkte zu erzeugen. Auch im Bereich industrieller Fertigung ist man auf exakt dosierte Tröpfchen angewiesen, z.B. bei Packaging und Montage von Halbleiter-Chips oder in der Leiterplatten-Fertigung (PCB). Die Inkjet-Technologie ist hier jedoch häufig überfordert, denn es müssen viele heiße und aggressive oder hochviskose Flüssigkeiten verarbeitet werden. Um die nanolitergroßen Tröpfchen zu erzeugen, wird in diesen Anwendungsbereichen deshalb oft mit schnell schaltenden Ventilen gearbeitet.

Wieder anders und vor allem noch komplexer sind die Anforderungen an die Nanoliterdosierung in Biotechnologie, Medizintechnik oder Diagnostik. So müssen bei der Herstellung von Microarrays und Lab-on-a-Chip-Systemen sowie für die Wirkstoff-Forschung meist viele verschiedene Flüssigkeiten mit recht unterschiedlichen Eigenschaften präzise dosiert werden. Dabei gilt es, zum einen gegenseitige Kontaminationen zu verhindern. Zum anderen muss die verwendete Technik in der Lage sein, unter Berücksichtigung von Viskosität, Oberflächenspannung und Dichte der Medien sowie der Dosiergeschwindigkeit perfekte Tröpfchen zu generieren. Vernebelung, Satellitenbildung beim Auftreffen oder ein Nachtropfen sind zu verhindern, um zuverlässige und wiederholbare Ergebnisse zu erhalten, z.B. beim Drug-Screening. Beste Voraussetzungen dafür liefert die von Biofluidix entwickelte PipeJetTM-Technolgie, die beim Dosieren auf eine piezogetriebene Direktverdrängung setzt (Bild 2). Ein Anwendungsbeispiel für solche Dispenser in der klinischen Diagnostik sind die zu Diagnostikzwecken genutzten Lateral Flow Assays, also Teststreifen, die eine gezielte Dosierung von Flüssigkeiten erfordern.

Präzise Linearbewegung erzeugt das optimale Tröpfchen
In allen genannten Anwendungsbereichen ist die Voraussetzung für eine genaue und zuverlässige Dosierung die Wahl eines passenden Antriebs, der den für die Tröpfchenbildung notwendigen Hub mit der entsprechenden Energie erzeugt. Dies gilt für das Inkjet-Drucken genauso wie für schnell schaltende Ventile in der Halbleiterfertigung oder die PipeJet-Dispenser. Dabei sind Piezoaktoren praktisch ohne ernstzunehmende Alternative (Bild 3) und das gleich aus mehreren Gründen:

Piezoaktoren erzeugen die benötigten Linearbewegungen sehr präzise und ohne Umwege. Gleichzeitig erfüllen sie auch alle anderen Anforderungen, die für Dosier- oder Pumpenanwendungen typisch sind: So arbeiten sie mit kurzen Ansprechzeiten; dabei bewegen sie sich mit Auflösungen im Nanometerbereich bei hoher Dynamik und Frequenzen bis zu mehreren tausend Hertz. Auf diese Weise sind kurze Dosierzyklen realisierbar. Durch die variablen Hübe lassen sich die Dosiervorgänge fein justierbar und präzise steuern. Da Piezoaktoren bei kleinem Bauraum hohe Effizienz bieten, gibt es auch bei den kleinen Geräteausführungen keine Einbauprobleme. Im praktischen Einsatz kommen aber noch weitere positive Eigenschaften zum Tragen. Piezoaktoren sind wartungsfrei, weil sie keine im klassischen Sinn bewegten Teile haben. Da die Bewegung auf kristallinen Festkörpereffekten beruht, gibt es keine rotierenden oder reibenden Mechaniken. Da sie statisch keine elektrische Leistung benötigen und ihre Position halten, können die Piezos auch im Hinblick auf den Energieverbrauch punkten.

Langlebig, zuverlässig und robust
Piezoaktoren spielen als Dosierantriebe in den unterschiedlichen Geräten eine wichtige Rolle. Daher müssen sie auch hinsichtlich Lebenserwartung, Zuverlässigkeit und Robustheit hohe Anforderungen erfüllen. Dr. rer. nat. Peter Koltay, Geschäftsführer bei Biofluidix, erläutert dies am Beispiel der PipeJet-Technik: „Die Wirkung des Piezoaktors auf den mit Flüssigkeit gefüllten Dosierschlauch veranlasst den Abriss des Tropfens und bestimmt somit die resultierenden Tropfeneigenschaften. Damit hat der eingesetzte Stack-Aktor eine wichtige Funktion innerhalb des Dispensers und wir legen bei der Auswahl großen Wert auf Qualität.“(Bild 4) Ein Beispiel dafür sind die Dispenser-Module der Baureihe PipeJetTM-P9, die sehr flexibel und robust sind (Bild 5). Je nach Anwendungsfall können mit ihnen auch mehrkanalige Anwendungen realisiert werden, wobei der Abstand zwischen den Abgabestellen minimal 9 mm beträgt und jeder Kanal individuell steuerbar ist. Die Module eignen sich für Tropfenvolumen von 5…60 nl mit einer Dosierfrequenz von bis zu 100 Hz. Einsatzgebiete finden sich in Medizintechnik, Diagnostik und Biotechnologie sowie auch in industriellen Anwendungen, z.B. im Dauerbetrieb in Produktionsanlagen.

„Den hohen Anforderungen an die Robustheit vor allem im Industriebereich müssen natürlich auch die Piezoaktoren genügen“, so Koltay weiter. „Für die PICMA-Aktoren aus dem Hause PI Ceramic, einem Tochterunternehmen der in Karlsruhe ansässigen Firma Physik Instrumente (PI), sind Dauerbeanspruchungen jedoch kein Problem.“ In Langzeituntersuchungen haben diese Piezoaktoren mehrere Milliarden Zyklen ohne messbare Veränderungen des Verhaltens durchlaufen (Bild 6). „Außerdem erreichen sie im Gegensatz zu den meisten handelsüblichen Ausführungen bereits bei Betriebsspannungen deutlich unter 150 V ihre Nennauslenkung“, ergänzt Koltay.

Das piezogetriebene Direktverdrängerverfahren
Das piezogetriebene Direktverdrängerverfahren der PipeJetTM-Dispenser unterscheidet sich von herkömmlichen Piezo-Dosierverfahren in zwei entscheidenden Punkten: Die Fluidleitung besteht nicht aus Glas- oder Stahlkapillaren, sondern aus einem elastischen Polymerschlauch mit definiertem Innendurchmesser, der nicht fest mit dem Piezoaktor verbunden ist. Dadurch können fluidkontaminierte Teile leicht und kostengünstig ausgewechselt werden. Der wertvolle Piezoantrieb geht so beim Austausch nicht verloren (vgl. Bild 3). Der eingesetzte Aktor dehnt sich entlang seiner Längsachse aus und kann im Gegensatz zu den sonst üblichen Ringaktoren den Polymerschlauch über einen Kolben bis zu 100-mal stärker verengen. Damit bringt er für die sichere Dosierung schwieriger Medien genügend Kraftreserven auf. Dadurch und aufgrund der einfachen fluidischen Geometrie können auch partikelbehaftete Flüssigkeiten wie z.B. Farben, Bead- oder Zellsuspensionen problemlos in exakter Tröpfchenform dosiert werden. Das jeweilige Volumen wird dabei über die Amplitude des Piezoaktors gesteuert. Sie ist in einem weiten Bereich nahezu unabhängig von Viskosität und Oberflächenspannung der zu dosierenden Flüssigkeit. „Die Vorzüge von Piezoaktoren nutzen wir aber nicht nur bei den PipeJetTM- Dispensern, sondern auch bei der für das Drucken von Microarrays oder Biochips entwickelten, ebenfalls kontaktlosen TopSpot®-Technologie“, so Koltay abschließend. Das Hauptelement dieses Verfahrens ist ein Druckkopf mit 24 oder 96 Flüssigkeitsreservoiren, die im Raster eines Standard 384 Well-MTP-Formats angeordnet sind (Bild 7).

Dipl.-Phys. Steffen Arnold*) und M.A. Ellen-Christine Reiff**) | LABO
Weitere Informationen:
http://www.labo.de/labortechnik/Labortechnik---Piezoaktoren---Hochgenau-dosieren-mit-Piezoaktoren.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

nachricht Aktive Prothese verändert Hirnfunktionen von Schlaganfall-Patienten
15.09.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie