Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochgenau dosieren mit Piezoaktoren

01.10.2010
Leiter „Markt und Produkte“ bei Physik Instrumente (PI) GmbH & Co. KG.
Redaktionsbüro Stutensee.
Viele Anwendungsgebiete verlangen heute nach Verfahren, die feine Tröpfchen mit Volumina im Mikro- oder Nanoliterbereich produzieren. Typische Beispiele finden sich bei Tintenstrahldruckern aus dem Privat- oder Bürobereich ebenso wie bei industriellen Großformatdruckern, die beispielsweise in der Produktion von Flachbildschirmen eingesetzt werden. Weitere Applikationen gibt es beim Mikro-Löten oder bei den so genannten Mikrodispensern, die in Medizintechnik und Biotechnologie unterschiedlichste Flüssigkeiten mit höchster Präzision dosieren.

So unterschiedlich wie die Branchen, in denen exakt dosiert werden muss, sind letztendlich auch die zur Tröpfchenbildung eingesetzten Geräte. Eine entscheidende Gemeinsamkeit jedoch verbindet sie: Für die zur präzisen und reproduzierbaren Dosierung der kleinen Mengen erforderlichen hochgenauen Bewegungsabläufe gelten meist Piezoaktoren als erste Wahl.

Vom Inkjet-Drucker bis zum Mikrodispenser
Verfahren, die feine Tröpfchen mit Volumina im Mikro- oder Nanoliterbereich produzieren, arbeiten heute oft kontaktlos, d.h., die Tröpfchen werden aus einer Düse ausgestoßen und treffen danach auf das Substrat, möglichst ohne ihre Form einzubüßen. Ein großer Markt dafür bildet die bei professionellen, großflächigen Druckern übliche Inkjet-Technologie. Die hochwertigen Farben werden als Tröpfchen mit genau definierten Volumina im Bereich zwischen 1…100 Picolitern aus Düsen auf das Papier geschleudert, um die einzelnen Punkte zu erzeugen. Auch im Bereich industrieller Fertigung ist man auf exakt dosierte Tröpfchen angewiesen, z.B. bei Packaging und Montage von Halbleiter-Chips oder in der Leiterplatten-Fertigung (PCB). Die Inkjet-Technologie ist hier jedoch häufig überfordert, denn es müssen viele heiße und aggressive oder hochviskose Flüssigkeiten verarbeitet werden. Um die nanolitergroßen Tröpfchen zu erzeugen, wird in diesen Anwendungsbereichen deshalb oft mit schnell schaltenden Ventilen gearbeitet.

Wieder anders und vor allem noch komplexer sind die Anforderungen an die Nanoliterdosierung in Biotechnologie, Medizintechnik oder Diagnostik. So müssen bei der Herstellung von Microarrays und Lab-on-a-Chip-Systemen sowie für die Wirkstoff-Forschung meist viele verschiedene Flüssigkeiten mit recht unterschiedlichen Eigenschaften präzise dosiert werden. Dabei gilt es, zum einen gegenseitige Kontaminationen zu verhindern. Zum anderen muss die verwendete Technik in der Lage sein, unter Berücksichtigung von Viskosität, Oberflächenspannung und Dichte der Medien sowie der Dosiergeschwindigkeit perfekte Tröpfchen zu generieren. Vernebelung, Satellitenbildung beim Auftreffen oder ein Nachtropfen sind zu verhindern, um zuverlässige und wiederholbare Ergebnisse zu erhalten, z.B. beim Drug-Screening. Beste Voraussetzungen dafür liefert die von Biofluidix entwickelte PipeJetTM-Technolgie, die beim Dosieren auf eine piezogetriebene Direktverdrängung setzt (Bild 2). Ein Anwendungsbeispiel für solche Dispenser in der klinischen Diagnostik sind die zu Diagnostikzwecken genutzten Lateral Flow Assays, also Teststreifen, die eine gezielte Dosierung von Flüssigkeiten erfordern.

Präzise Linearbewegung erzeugt das optimale Tröpfchen
In allen genannten Anwendungsbereichen ist die Voraussetzung für eine genaue und zuverlässige Dosierung die Wahl eines passenden Antriebs, der den für die Tröpfchenbildung notwendigen Hub mit der entsprechenden Energie erzeugt. Dies gilt für das Inkjet-Drucken genauso wie für schnell schaltende Ventile in der Halbleiterfertigung oder die PipeJet-Dispenser. Dabei sind Piezoaktoren praktisch ohne ernstzunehmende Alternative (Bild 3) und das gleich aus mehreren Gründen:

Piezoaktoren erzeugen die benötigten Linearbewegungen sehr präzise und ohne Umwege. Gleichzeitig erfüllen sie auch alle anderen Anforderungen, die für Dosier- oder Pumpenanwendungen typisch sind: So arbeiten sie mit kurzen Ansprechzeiten; dabei bewegen sie sich mit Auflösungen im Nanometerbereich bei hoher Dynamik und Frequenzen bis zu mehreren tausend Hertz. Auf diese Weise sind kurze Dosierzyklen realisierbar. Durch die variablen Hübe lassen sich die Dosiervorgänge fein justierbar und präzise steuern. Da Piezoaktoren bei kleinem Bauraum hohe Effizienz bieten, gibt es auch bei den kleinen Geräteausführungen keine Einbauprobleme. Im praktischen Einsatz kommen aber noch weitere positive Eigenschaften zum Tragen. Piezoaktoren sind wartungsfrei, weil sie keine im klassischen Sinn bewegten Teile haben. Da die Bewegung auf kristallinen Festkörpereffekten beruht, gibt es keine rotierenden oder reibenden Mechaniken. Da sie statisch keine elektrische Leistung benötigen und ihre Position halten, können die Piezos auch im Hinblick auf den Energieverbrauch punkten.

Langlebig, zuverlässig und robust
Piezoaktoren spielen als Dosierantriebe in den unterschiedlichen Geräten eine wichtige Rolle. Daher müssen sie auch hinsichtlich Lebenserwartung, Zuverlässigkeit und Robustheit hohe Anforderungen erfüllen. Dr. rer. nat. Peter Koltay, Geschäftsführer bei Biofluidix, erläutert dies am Beispiel der PipeJet-Technik: „Die Wirkung des Piezoaktors auf den mit Flüssigkeit gefüllten Dosierschlauch veranlasst den Abriss des Tropfens und bestimmt somit die resultierenden Tropfeneigenschaften. Damit hat der eingesetzte Stack-Aktor eine wichtige Funktion innerhalb des Dispensers und wir legen bei der Auswahl großen Wert auf Qualität.“(Bild 4) Ein Beispiel dafür sind die Dispenser-Module der Baureihe PipeJetTM-P9, die sehr flexibel und robust sind (Bild 5). Je nach Anwendungsfall können mit ihnen auch mehrkanalige Anwendungen realisiert werden, wobei der Abstand zwischen den Abgabestellen minimal 9 mm beträgt und jeder Kanal individuell steuerbar ist. Die Module eignen sich für Tropfenvolumen von 5…60 nl mit einer Dosierfrequenz von bis zu 100 Hz. Einsatzgebiete finden sich in Medizintechnik, Diagnostik und Biotechnologie sowie auch in industriellen Anwendungen, z.B. im Dauerbetrieb in Produktionsanlagen.

„Den hohen Anforderungen an die Robustheit vor allem im Industriebereich müssen natürlich auch die Piezoaktoren genügen“, so Koltay weiter. „Für die PICMA-Aktoren aus dem Hause PI Ceramic, einem Tochterunternehmen der in Karlsruhe ansässigen Firma Physik Instrumente (PI), sind Dauerbeanspruchungen jedoch kein Problem.“ In Langzeituntersuchungen haben diese Piezoaktoren mehrere Milliarden Zyklen ohne messbare Veränderungen des Verhaltens durchlaufen (Bild 6). „Außerdem erreichen sie im Gegensatz zu den meisten handelsüblichen Ausführungen bereits bei Betriebsspannungen deutlich unter 150 V ihre Nennauslenkung“, ergänzt Koltay.

Das piezogetriebene Direktverdrängerverfahren
Das piezogetriebene Direktverdrängerverfahren der PipeJetTM-Dispenser unterscheidet sich von herkömmlichen Piezo-Dosierverfahren in zwei entscheidenden Punkten: Die Fluidleitung besteht nicht aus Glas- oder Stahlkapillaren, sondern aus einem elastischen Polymerschlauch mit definiertem Innendurchmesser, der nicht fest mit dem Piezoaktor verbunden ist. Dadurch können fluidkontaminierte Teile leicht und kostengünstig ausgewechselt werden. Der wertvolle Piezoantrieb geht so beim Austausch nicht verloren (vgl. Bild 3). Der eingesetzte Aktor dehnt sich entlang seiner Längsachse aus und kann im Gegensatz zu den sonst üblichen Ringaktoren den Polymerschlauch über einen Kolben bis zu 100-mal stärker verengen. Damit bringt er für die sichere Dosierung schwieriger Medien genügend Kraftreserven auf. Dadurch und aufgrund der einfachen fluidischen Geometrie können auch partikelbehaftete Flüssigkeiten wie z.B. Farben, Bead- oder Zellsuspensionen problemlos in exakter Tröpfchenform dosiert werden. Das jeweilige Volumen wird dabei über die Amplitude des Piezoaktors gesteuert. Sie ist in einem weiten Bereich nahezu unabhängig von Viskosität und Oberflächenspannung der zu dosierenden Flüssigkeit. „Die Vorzüge von Piezoaktoren nutzen wir aber nicht nur bei den PipeJetTM- Dispensern, sondern auch bei der für das Drucken von Microarrays oder Biochips entwickelten, ebenfalls kontaktlosen TopSpot®-Technologie“, so Koltay abschließend. Das Hauptelement dieses Verfahrens ist ein Druckkopf mit 24 oder 96 Flüssigkeitsreservoiren, die im Raster eines Standard 384 Well-MTP-Formats angeordnet sind (Bild 7).

Dipl.-Phys. Steffen Arnold*) und M.A. Ellen-Christine Reiff**) | LABO
Weitere Informationen:
http://www.labo.de/labortechnik/Labortechnik---Piezoaktoren---Hochgenau-dosieren-mit-Piezoaktoren.htm

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Highspeed-Laser erkennt Krebs in zwei Minuten
25.04.2017 | University of Hong Kong

nachricht Pharmacoscopy: Mikroskopie der nächsten Generation
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie