Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochauflösende MRT-Bilder

21.10.2015

Im ultrahohen Magnetfeld lässt sich die Gehirnaktivität genauer nachweisen

Je stärker, desto besser? Auf Magnetresonanztomografie-Magneten scheint das zuzutreffen – wenn die richtige Methode eingesetzt wird. Prof. Klaus Scheffler, Direktor der Abteilung Biomedizinische Magnetresonanz an der Universität Tübingen und Leiter der Abteilung Hochfeld-Magnetresonanz am Max-Planck-Institut für biologische Kybernetik, und Dr. Philipp Ehses forschen an einer hochauflösenden MRT-Messmethode. Damit gelang es ihnen, Hirnstrukturen um ein Vielfaches genauer darzustellen und Gehirnaktivität besser zu lokalisieren.


Die im Ultrahochfeld aufgenommenen MRT-Hirnscans sind sehr viel detaillierter als herkömmliche Scans

Philipp Ehses / Max Planck Institut für biologische Kybernetik, Tübingen

In der funktionellen Magnetresonanztomografie (fMRT) hängt die Aussagekraft der Aufnahmen stark von der Signalstärke und damit von der Magnetfeldstärke des Gerätes ab. Eine hohe Auflösung ist für die richtige Interpretation des Signals wichtig, da die Nervenzellaktivität durch MRT nur indirekt gemessen werden kann.

Die Forscher der Abteilung Hochfeld-Magnetresonanz am Max-Planck-Institut für biologische Kybernetik arbeiten mit einem 9,4 Tesla-Magneten, wodurch sich die Auflösung der Hirnscans auf weniger als 1 mm reduzieren lässt. Kein Wunder: Das Magnetfeld ist mindestens dreimal so stark, wie das der medizinisch verwendeten Tomografen.

Das in der Studie verwendete fMRT-Verfahren basiert auf der sogenannten bSSFP-Methode (balanced steady-state free precession), die vor einigen Jahren bei wesentlich kleineren Magnetfeldern erstmals von Klaus Scheffler vorgestellt wurde.

Dr. Philipp Ehses, wissenschaftlicher Mitarbeiter in der Abteilung für Hochfeld-Magnetresonanz, über die Vorteile: „Diese Methode zielt vor allem darauf ab, den Signalanteil aus der Mikrovaskulatur in der grauen Hirnsubstanz gegenüber größeren Gefäßen zu erhöhen. Denn dort findet die tatsächliche Nervenzellaktivität statt.“ Da die Herkunft des fMRT-Signals entscheidend ist, liegt darin die Stärke der Methode.

Der Versuchsaufbau war simpel gehalten, denn es sollte lediglich die Sehrinde aktiviert werden – sie produziert ein besonders starkes Signal. Die Versuchspersonen betrachteten daher abwechselnd einen schwarzen Bildschirm und ein flackerndes Schachbrettmuster. Der Vergleich der MRT-Bilder dieser beiden Bedingungen lieferte dann eine Karte der Gehirnaktivierung.

Klaus Scheffler und Philipp Ehses wollen die mikroskopischen Prozesse, die für das fMRT-Signal verantwortlich sind, verstehen. Denn dies ist wesentliche Voraussetzung, um die richtigen Schlüsse aus neurowissenschaftlichen Experimenten zu ziehen und Messverfahren zu verbessern.

Doch selbst in den hochaufgelösten fMRT-Bildern der Studie befinden sich in jedem Bildpixel immer noch Millionen von Gehirnzellen und Tausende kleinerer Gefäßen. Zusätzliche Berechnungen durch Computersimulationen sind daher unerlässlich: Sie sollen im nächsten Schritt den Einfluss der Hirnstruktur auf das Signal ermitteln. Diese Kalkulationen müssen dann wiederum im Experiment bestätigt werden.

Obwohl die Signaleffizienz pro Zeiteinheit sehr gut ist, ist die bSSFP-fMRT gegenüber der klassischen Bildgebung bislang noch zwei- bis dreimal langsamer. Die Forscher wollen als Nächstes daran arbeiten, die Aufnahmezeit ihrer Methode soweit zu verringern, dass sie hinsichtlich der Geschwindigkeit mithalten kann.

Die bSSFP-Methode könnte in neurowissenschaftlichen Studien zum Einsatz kommen, aber auch im medizinischen Bereich, wie Prof. Klaus Scheffler erklärt: „Bisher wird die Methode routinemäßig in der Herzbildgebung eingesetzt. Wir könnten uns auch bei der Planung von Hirnoperationen eine Anwendung vorstellen - wichtige Hirnregionen könnten vor der Operation viel genauer lokalisiert werden.“

Originalpublikation:
Klaus Scheffler, Philipp Ehses; High-Resolution Mapping of Neuronal Activation
with Balanced SSFP at 9.4 Tesla; Magnetic Resonance in Medicine, 2015

DOI: 10.1002/mrm.25890

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 82 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Informationen:

http://tuebingen.mpg.de/en/cybernetics-news-2/detail/article/hochaufloesende-mrt...

Christina Bornschein | Max-Planck-Institut für biologische Kybernetik

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie