Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochauflösende MRT-Bilder

21.10.2015

Im ultrahohen Magnetfeld lässt sich die Gehirnaktivität genauer nachweisen

Je stärker, desto besser? Auf Magnetresonanztomografie-Magneten scheint das zuzutreffen – wenn die richtige Methode eingesetzt wird. Prof. Klaus Scheffler, Direktor der Abteilung Biomedizinische Magnetresonanz an der Universität Tübingen und Leiter der Abteilung Hochfeld-Magnetresonanz am Max-Planck-Institut für biologische Kybernetik, und Dr. Philipp Ehses forschen an einer hochauflösenden MRT-Messmethode. Damit gelang es ihnen, Hirnstrukturen um ein Vielfaches genauer darzustellen und Gehirnaktivität besser zu lokalisieren.


Die im Ultrahochfeld aufgenommenen MRT-Hirnscans sind sehr viel detaillierter als herkömmliche Scans

Philipp Ehses / Max Planck Institut für biologische Kybernetik, Tübingen

In der funktionellen Magnetresonanztomografie (fMRT) hängt die Aussagekraft der Aufnahmen stark von der Signalstärke und damit von der Magnetfeldstärke des Gerätes ab. Eine hohe Auflösung ist für die richtige Interpretation des Signals wichtig, da die Nervenzellaktivität durch MRT nur indirekt gemessen werden kann.

Die Forscher der Abteilung Hochfeld-Magnetresonanz am Max-Planck-Institut für biologische Kybernetik arbeiten mit einem 9,4 Tesla-Magneten, wodurch sich die Auflösung der Hirnscans auf weniger als 1 mm reduzieren lässt. Kein Wunder: Das Magnetfeld ist mindestens dreimal so stark, wie das der medizinisch verwendeten Tomografen.

Das in der Studie verwendete fMRT-Verfahren basiert auf der sogenannten bSSFP-Methode (balanced steady-state free precession), die vor einigen Jahren bei wesentlich kleineren Magnetfeldern erstmals von Klaus Scheffler vorgestellt wurde.

Dr. Philipp Ehses, wissenschaftlicher Mitarbeiter in der Abteilung für Hochfeld-Magnetresonanz, über die Vorteile: „Diese Methode zielt vor allem darauf ab, den Signalanteil aus der Mikrovaskulatur in der grauen Hirnsubstanz gegenüber größeren Gefäßen zu erhöhen. Denn dort findet die tatsächliche Nervenzellaktivität statt.“ Da die Herkunft des fMRT-Signals entscheidend ist, liegt darin die Stärke der Methode.

Der Versuchsaufbau war simpel gehalten, denn es sollte lediglich die Sehrinde aktiviert werden – sie produziert ein besonders starkes Signal. Die Versuchspersonen betrachteten daher abwechselnd einen schwarzen Bildschirm und ein flackerndes Schachbrettmuster. Der Vergleich der MRT-Bilder dieser beiden Bedingungen lieferte dann eine Karte der Gehirnaktivierung.

Klaus Scheffler und Philipp Ehses wollen die mikroskopischen Prozesse, die für das fMRT-Signal verantwortlich sind, verstehen. Denn dies ist wesentliche Voraussetzung, um die richtigen Schlüsse aus neurowissenschaftlichen Experimenten zu ziehen und Messverfahren zu verbessern.

Doch selbst in den hochaufgelösten fMRT-Bildern der Studie befinden sich in jedem Bildpixel immer noch Millionen von Gehirnzellen und Tausende kleinerer Gefäßen. Zusätzliche Berechnungen durch Computersimulationen sind daher unerlässlich: Sie sollen im nächsten Schritt den Einfluss der Hirnstruktur auf das Signal ermitteln. Diese Kalkulationen müssen dann wiederum im Experiment bestätigt werden.

Obwohl die Signaleffizienz pro Zeiteinheit sehr gut ist, ist die bSSFP-fMRT gegenüber der klassischen Bildgebung bislang noch zwei- bis dreimal langsamer. Die Forscher wollen als Nächstes daran arbeiten, die Aufnahmezeit ihrer Methode soweit zu verringern, dass sie hinsichtlich der Geschwindigkeit mithalten kann.

Die bSSFP-Methode könnte in neurowissenschaftlichen Studien zum Einsatz kommen, aber auch im medizinischen Bereich, wie Prof. Klaus Scheffler erklärt: „Bisher wird die Methode routinemäßig in der Herzbildgebung eingesetzt. Wir könnten uns auch bei der Planung von Hirnoperationen eine Anwendung vorstellen - wichtige Hirnregionen könnten vor der Operation viel genauer lokalisiert werden.“

Originalpublikation:
Klaus Scheffler, Philipp Ehses; High-Resolution Mapping of Neuronal Activation
with Balanced SSFP at 9.4 Tesla; Magnetic Resonance in Medicine, 2015

DOI: 10.1002/mrm.25890

Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 82 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Informationen:

http://tuebingen.mpg.de/en/cybernetics-news-2/detail/article/hochaufloesende-mrt...

Christina Bornschein | Max-Planck-Institut für biologische Kybernetik

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie