Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnströme messen: Mini-EEG zum Aufkleben

08.06.2017

Eine neue Technologie soll die Messung von Hirnströmen mittels Elektroenzephalografie (EEG) vereinfachen. Bislang messen Elektroden in einer Kappe, wie aktiv das Gehirn ist – ein aufwendiger Prozess. Zukünftig könnte eine Art Elektroden-Tattoo zum Aufkleben hinters Ohr eine Alternative sein, um EEG-Messungen auch außerhalb des Labors durchzuführen. Forscher des Leibniz-Instituts für Arbeitsforschung haben untersucht, wie verlässlich dieser Ansatz schon ist.

Im Gehirn arbeiten Milliarden von Nervenzellen. Sie stehen über elektrische Ströme in Kontakt. Diese Aktivität kann mittels Elektroenzephalografie schmerzfrei gemessen werden – ein Standardverfahren in der Neurologie, um beispielsweise krankhafte Veränderungen im Gehirn zu untersuchen.


Proband mit cEEGrid um das Ohr.

@IfADo

Für viele Fragen der Arbeitsforschung wird die Methode ebenfalls eingesetzt, um die kognitive Leistungsfähigkeit zu erfassen: Experten können zum Beispiel untersuchen wie Probanden auf Stress oder Ablenkungen reagieren, wie gut sie sich bei komplexen Aufgaben konzentrieren und wie sie Informationen verarbeiten können.

Um die EEG-Daten zu bekommen, muss die Versuchsperson verkabelt werden: Eine Kappe mit 64 Elektroden wird befestigt, alle Elektroden werden mit Leitgel versehen, weshalb sich die Versuchsperson im Anschluss die Haare waschen muss. Dieser aufwendige und stark kontrollierte Prozess kann ablenken und die Akzeptanz des Trägers mindern.

An praktischeren Alternativen wird bereits geforscht: Ein Expertenteam der Universität Oldenburg hat ein c-förmiges Miniatur-EEG namens cEEGrid entwickelt, das sich wie ein dünnes Aufklebetattoo hinter die Ohren schnell und unkompliziert anbringen lässt. Die Aufzeichnung der Signale kann dabei auch drahtlos erfolgen – der Träger ist mobil und das cEEGrid fällt im Gegensatz zur Kappe nicht auf.

Datenvergleich von EEG-Kappe und Mini-EEG

Wie verlässlich die Daten dieser Technologie im Hinblick auf kognitive Parameter sind, haben Forscher des Leibniz-Instituts für Arbeitsforschung an der TU Dortmund (IfADo) untersucht. Dazu hat das Team um Dr. Marlene Pacharra die Daten von Probanden gegenübergestellt, die eine Aufgabe am PC lösen mussten.

Dabei wurde das EEG sowohl mittels Kappe als auch via Mini-EEG abgeleitet. Da es sich bei der Aufgabe um einen seit Jahrzehnten in der Psychologie angewandten Test handelte, war für die Forscher absehbar, wie sich das mit der Kappe abgeleitete EEG verhalten müsste.

„Wir konnten zeigen, dass Form und Gestalt des Mini-EEGs bei visuellen und kognitiven Parametern denen der Kappe ähneln“, sagt Pacharra. „Allerdings sind diese Signale beim Mini-EEG vergleichsweise schwach.“ In folgenden Studien soll der Algorithmus, der die Daten des EEG analysiert, weiter angepasst werden, um Störsignale, die durch Bewegung entstehen, besser isolieren zu können und so die Signalqualität zu erhöhen.

„Gelingt es auch mobil ein deutliches EEG abzuleiten, dann könnten wir in einem nächsten Schritt die kontrollierten Laborbedingungen verlassen. Arbeitsplatzsimulationen mit dem EEG hinterm Ohr könnten folgen“, sagt Julian Reiser, Doktorand in dem Projekt.

Hintergrund:
Die Idee, Hirnströme mittels eines Mini-EEGs hinter dem Ohr zu messen, stammt aus dem Team um den Oldenburger Neuropsychologen Prof. Stefan Debener. Die Finanzierung der ersten Version des cEEGrids stammte aus dem DFG Exzellenzcluster „Hearing4All“. Debener und Kollegen, sowie die Forscher des IfADo haben keine finanzielle Beziehung zu der Herstellerfirma der cEEGrids und profitieren finanziell nicht an ihrem Verkauf. Debener und Kollegen verfolgen das Ziel tragbare Mini-EEG Lösungen zu entwickeln und sie der Forschungsgemeinschaft zur Verfügung zu stellen (www.ceegrid.com).

Publikation:
Pacharra, M., Debener, S., Wascher, E. (2017): Concealed around-the-ear EEG captures cognitive processing in a visual Simon task. Front. Hum. Neurosci. 11:290. Doi: 10.3389/fnhum.2017.00290

Ansprechpartnerin:
Dr. Marlene Pacharra
Wissenschaftliche Mitarbeiterin Ergonomie
Telefon: + 49 231 1084-371
E-Mail: pacharra@ifado.de

Das IfADo - Leibniz-Institut für Arbeitsforschung an der TU Dortmund erforscht die Potenziale und Risiken moderner Arbeit auf lebens- und verhaltenswissenschaftlicher Grundlage. Aus den Ergebnissen werden Prinzipien der leistungs- und gesundheitsförderlichen Gestaltung der Arbeitswelt abgeleitet. Das IfADo hat mehr als 200 Mitarbeiter/innen aus naturwissenschaftlichen und technischen Disziplinen. Das Institut ist Mitglied der Leibniz-Gemeinschaft, die 91 selbstständige Einrichtungen umfasst. Die Leibniz-Institute beschäftigen rund 18.600 Personen, darunter 9.500 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,7 Milliarden Euro.

Weitere Informationen:

http://journal.frontiersin.org/article/10.3389/fnhum.2017.00290/full Zur Studie

Eva Mühle | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ifado.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Extrem schnelle Erfassung und Visualisierung von Tumorgrenzen während der Operation
15.01.2018 | Universität zu Lübeck

nachricht Wie Metallstrukturen effektiv helfen, Knochen zu heilen
12.01.2018 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften