Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnschrittmacher soll Depression dauerhaft bekämpfen

31.01.2011
Fast zehn Prozent aller Depressionen verlaufen so schwer, dass die Patienten auf keine gängige Behandlungsmethode ansprechen. Hoffnung macht in jüngster Zeit die gezielte Stimulation von Bereichen im Gehirn mit einer Art "Hirnschrittmacher"

Mediziner der Universität Bonn haben nun zusammen mit US-Kollegen eine neue Zielstruktur für die tiefe Hirnstimulation (so der Fachterminus) vorgestellt. Sie hoffen auf eine noch bessere Erfolgsquote bei geringeren Nebenwirkungen. Die Arbeit ist in den renommierten "Neuroscience and Biobehavioral Reviews" erschienen (doi: 10.1016/j.neurobiorev.2010.12.009).

Bei der tiefen Hirnstimulation implantieren Mediziner Elektroden ins Gehirn. Mit einem elektrischen Schrittmacher, den die Betroffenen unter das Schlüsselbein eingesetzt bekommen, können die Ärzte so dauerhaft die Funktion bestimmter Hirngebiete beeinflussen. Ursprünglich wurde die Methode zur Behandlung von Parkinsonkranken entwickelt, um die typischen Bewegungsstörungen zu mildern.

Dauerhafte Besserung

Seit einigen Jahren wird die Methode auch bei der Behandlung schwerster Depressionen erforscht. Mit erstaunlichem und völlig unerwartetem Erfolg: Bei Patienten, die einen jahrelangen erfolglosen Behandlungsmarathon hinter sich hatten, bildeten sich die Symptome mitunter deutlich zurück. Das erstaunlichste dabei: "Die Depression kommt bei den Patienten, die auf die Stimulation angesprochen haben, nicht wieder", betont Professor Dr. Thomas Schläpfer von der Bonner Klinik für Psychiatrie und Psychotherapie. "Die Methode scheint dauerhaft zu wirken - und das bei der therapieresistentesten Patientengruppe, die in der Literatur beschrieben wurde. Das hat es bislang noch nicht gegeben."

Die tiefe Hirnstimulation wurde bislang bei drei verschiedenen Hirnregionen erprobt: dem Nucleus accumbens, der Capsula interna und einer Struktur namens cg25. Erstaunlicherweise sind die Effekte nahezu identisch - unabhängig davon, welches dieser Zentren die Ärzte reizen. Die Bonner Forscher konnten inzwischen zusammen mit Kollegen aus Baltimore und Washington aufklären, warum das so ist: Mit Hilfe einer neuartigen Tomographie-Methode konnten sie die "Verkabelung" der drei Hirnzentren sichtbar machen. "Dabei haben wir festgestellt, dass zumindest zwei dieser drei Gebiete - wahrscheinlich sogar alle drei - an ein und demselben Kabelstrang hängen", erklärt der Bonner Hirnschirurg Professor Dr. Volker Coenen.

Die Rede ist vom so genannten Medialen Vorderhirnbündel, einer Struktur, die bei Tieren schon lange bekannt ist. Das Vorderhirnbündel bildet eine Art Rückkopplungsschleife, die uns positive Erfahrungen antizipieren lässt. "Dieser Schaltkreis motiviert uns dazu, in Aktion zu treten", sagt Coenen. "Bei Depressiven ist er augenscheinlich gestört. Die Folge ist unter anderem eine extreme Antriebsarmut - ein charakteristisches Symptom der Krankheit."

Nucleus accumbens, Capsula interna und cg25 scheinen alle mit dem medialen Vorderhirnbündel verbunden zu sein - etwa so wie Blätter mit dem Ast, dem sie entspringen. Wer eine dieser Hirnregionen reizt, beeinflusst gleichzeitig in einem gewissen Maß auch die anderen Komponenten des Motivations-Schaltkreises. Coenen, der das Vorderhirnbündel als erster beim Menschen anatomisch beschrieben hat, schlägt nun vor, die Elektrode für die tiefe Hirnstimulation direkt in diese Struktur zu implantieren. "Wir würden damit die Strompulse an die Basis des Netzwerkes senden und nicht wie bisher an die Peripherie", erläutert Schläpfer. "So könnten wir möglichweise mit geringeren Stromstärken arbeiten und dennoch größere Erfolge erzielen."

Vergleichsweise risikoarmer Eingriff

Beobachtungen an Parkinson-Kranken scheinen diese Idee zu stützen: Dort reizt man ein Netzwerk von Hirnstrukturen, die für Bewegungen zuständig sind. Je grundständiger (bildlich gesprochen: je näher am Ast) die elektrischen Reize gesetzt werden, desto größer ist ihr Effekt. Gleichzeitig verringert sich die Gefahr unerwünschter Nebenwirkungen.

Weltweit tragen inzwischen über 80.000 Parkinson-Patienten einen Hirnschrittmacher in ihrem Körper. "Die bisherigen Erfahrungen zeigen, dass der dazu erforderliche Eingriff am Gehirn relativ risikoarm ist", betont Professor Coenen. "Es spricht also aus ärztlicher Sicht nichts dagegen, mit dieser Methode auch Menschen mit schwersten Depressionen zu helfen."

Kontakt:
Professor Dr. Arnd Coenen
Klinik und Poliklinik für Neurochirurgie, Universität Bonn
Telefon: 0228/287-16503
E-Mail: volker.coenen@ukb.uni-bonn.de
Professor Dr. Thomas Schläpfer
Klinik für Psychiatrie und Psychotherapie der Universität Bonn
Telefon: 0228/287-15715
E-Mail: schlaepf@jhmi.edu

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

nachricht Aktive Prothese verändert Hirnfunktionen von Schlaganfall-Patienten
15.09.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik