Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirn- und Krebserkrankungen durch stärkere Magnetfelder früher erkennen

03.09.2009
Dank technischer Fortschritte werden Magnetresonanztomographen (MRT) immer leistungsstärker. So kommen Geräte mit einer Magnetfeldstärke von 3 Tesla mittlerweile auch im klinischen Alltag zum Einsatz.

Im Vergleich zu herkömmlichen 1,5-Tesla-Geräten verkürzt sich damit nicht nur die Untersuchungszeit. Auch die Auflösung der Bilder ist höher. Hirnerkrankungen lassen sich so oft besser und früher erkennen.

Aber auch bei der Suche nach kleinsten Krebsherden und der Darstellung von Gefäßen bietet die 3-Tesla-MRT Vorteile. Technische Fortschritte in der MRT-Diagnostik sind ein Schwerpunkt von neuroRAD, der 44. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie (DGNR).

Tesla ist die Einheit der magnetischen Feldstärke. "Durch die Verdopplung der Feldstärke können wir entweder die Dauer einer Untersuchung verkürzen oder - bei konstanter Untersuchungszeit - deutlich schärfere Bilder erzeugen", erläutert Professor Friedhelm Zanella, Direktor des Instituts für Neuroradiologie an der Goethe-Universität Frankfurt am Main. Schnellere Untersuchungen sind vor allem bei Kindern und unruhigen Patienten von Vorteil. Meist entscheiden sich Neuroradiologen jedoch für eine möglichst detaillierte Darstellung. "Vieles lässt sich mit 3-Tesla-Geräten besser und vor allem früher erkennen. Das können die Entzündungsherde bei Multipler Sklerose oder Metastasen bei Krebserkrankungen sein. Bei Patienten mit Epilepsien können wir künftig häufiger die Ursache feststellen", erklärt Zanella im Vorfeld der DGNR-Jahrestagung.

Der Experte verspricht sich von den neuen Geräten zudem eine bessere Früherkennung von sogenannten Aneurysmen. Diese Aussackungen in der Wand von Blutgefäßen können tödliche Hirnblutungen auslösen. Vorteile sieht Professor Zanella auch bei einer Reihe von Spezialuntersuchungen wie der sogenannten "1H MR-Spektroskopie" und der funktionellen MRT. Erstere erlaubt es Ärzten, den Stoffwechsel von Hirntumoren zu untersuchen. Die funktionelle MRT wiederum erleichtert die Abgrenzung von funktionell wichtigen Hirnarealen, die bei einer Hirnoperation geschont werden sollen.

Professor Zanella ist überzeugt, dass 3-Tesla-Geräte die Ärzte bei vielen Fragestellungen voranbringen werden. "Dennoch muss die Frage stets lauten: Ändert sich durch die Untersuchung auch die Therapie des Patienten? Verbessern sich seine Heilungschancen?" So belegen zwar erste Studien die Vorteile der 3-Tesla-MRT, doch Geräte mit geringeren Magnetfeldern haben deshalb nicht ausgedient: "Eine Schlaganfalldiagnostik ist auch mit 1,5-Tesla-Geräten sehr gut möglich", so Zanella.

Negative Folgen für den Patienten haben die neuen leistungsstärkeren Geräte nicht. Erst bei noch höheren Feldstärken von 7 Tesla spüren die Patienten gelegentlich die Auswirkungen des Magnetfelds. Solche Geräte kommen in Deutschland allerdings erst an wenigen Forschungsinstituten zum Einsatz. "Es kann hier zu spontanen Nervenerregungen kommen, die die Patienten zum Beispiel als Lichtblitze wahrnehmen", berichtet Zanella, der die technischen Fortschritte in der MRT-Diagnostik auch mit seinen Kollegen auf der DGNR-Jahrestagung diskutieren wird. Der Kongress findet vom 8. bis zum 10. Oktober 2009 im Kölner Gürzenich statt.

Pressekontakt:

Pressestelle neuroRAD
Jahrestagung der Deutschen Gesellschaft für Neuroradiologie (DGNR)
Silke Stark
Postfach 30 11 20
70451 Stuttgart
Tel.: 0711 8931-572
Fax: 0711 8931-167
stark@medizinkommunikation.org

| idw
Weitere Informationen:
http://www.neurorad.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics