Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hautkrebs noch besser erkennen

07.03.2012
Ganzkörper-Hautkrebs-Screening: Niedersächsische Forschungskooperation entwickelt modernes Gerät zur Hautkrebserkennung. Digitale Technologie soll Hautärzte bei der Diagnosestellung unterstützten.

Die Haut ist mit fast zwei Quadratmetern das größte Organ des Körpers, deshalb ist es auch besonders anfällig für Erkrankungen. Hautkrebs ist der am häufigsten auftretende Krebs in Deutschland. Jedes Jahr erkranken 140.000 Menschen daran.


Hautkrebs am Unterschenkel: Die Hautfelderung ist aufgehoben, die Begrenzung unregelmäßig. Braune, rötliche und fast schwarze Farbtöne stehen nebeneinander. Foto: Universitäts-Hautklinik Göttingen


Digitales UV-Phototherapiegerät: Das medizinische Gerät zur Erkennung von Hautkrankheiten wie Schuppenflechte oder Neurodermitis dient mechanisch und technologisch als Basis zur Entwicklung des neuen digitalen Dermatoskopiegerätes. Grafik: Lüllau Engineering

Veränderungen der Haut können überall am Körper entstehen, nicht nur an Stellen, die besonders der Sonne ausgesetzt sind. Aus diesem Grund ist es besonders wichtig, auffällige Hautveränderungen fachmännisch untersuchen zu lassen. Trotz gründlicher und gewissenhafter Untersuchung kann es vorkommen, dass Hautveränderungen nicht entdeckt oder falsch diagnostiziert werden.

Ein Grund dafür: Die korrekte Diagnosestellung hängt stark von der Erfahrung des untersuchenden Arztes ab. Um Hautkrebs zukünftig noch besser zu erkennen, entwickeln acht niedersächsische Partner aus Medizin und Technik ein digitales Dermatoskopiegerät. Das Gerät soll Ärzte zukünftig mit einem automatisierten Ganzkörper-Hautkrebs-Screening bei der genauen Diagnosestellung unterstützen.

Das Gemeinschaftsprojekt "Entwicklung eines digitalen Dermatoskopiegerätes mit erweitertem Diagnoseumfang für das automatisierte sequentielle Ganzkörper-Hautkrebs-Screening (HKS)" wird für zwei Jahre mit einer Projektsumme von 1,8 Millionen Euro vom Bundesministerium für Wirtschaft und Technologie gefördert.

Die Projektpartner im Forschungsprojekt sind: die Hautkliniken der Universitätsmedizin Göttingen und der Medizinischen Hochschule Hannover, das Institut für Informationsverarbeitung sowie das Hannoversche Zentrum für optische Technologien (HOT) der Leibniz Universität Hannover, die Hochschule Hannover sowie aus der Industrie die Firmen Lüllau Engineering GmbH, tpm taberna pro medicum GmbH und Basys GmbH aus Lüneburg.
EIN SCANNER FÜR DIE HAUT
Als erstes werden im Kooperationsprojekt die technischen und medizinischen Voraussetzungen für das automatisierte Hautkrebs-Screening geschaffen: Dazu muss eine bestimmte Fototechnik und eine automatisierte Bilderkennung entwickelt werden. Auf dieser Grundlage können die Experten gesicherte Diagnosealgorithmen bestimmen. Das bedeutet: Es werden Parameter festgelegt, die entscheiden, ob es sich bei der Hautveränderung um Hautkrebs handelt oder nicht. Der Scanvorgang sieht dann folgendermaßen aus: Um auffällige Pigmentmale auf der Haut digital zu erfassen, werden sie mit Hilfe des neuen Dermatoskopiegerätes gescannt. Dies geschieht mittels berührungsfreier digitaler Dermatoskopie. So können auch tiefer liegende Hautschichten betrachtet werden. Um die erkrankte Haut automatisch zu erkennen, ist eine spezielle Kamera eingebaut. Sie erfasst anhand der vorher gewonnenen Daten und Parameter die Bereiche auf der Haut, die in Abgrenzung zu anderen Auffälligkeiten, wie entzündlichen Läsionen, als Hautkrebs in Erscheinung treten. Die Bilddaten dieser Kamera werden an einem Rechner weitergeleitet, der diese verarbeitet. Zusätzliche Informationen sollen durch eine hochfrequente Ultraschalluntersuchung der Hautläsion in den Diagnosealgorithmus mit einfließen. Anhand dieser konturgenauen Erfassung von kleinsten Hautveränderungen wird dem Arzt auf der Grundlage gesicherter Algorithmen eine Verdachtsdiagnose vorgeschlagen. In einer klinischen Pilotstudie soll der Einsatz des neu entwickelten Gerätes getestet werden. Die Studie wird dann in den Hautkliniken der Universitätsmedizin Göttingen und der Medizinischen Hochschule Hannover stattfinden.
HAUTKREBS
Mit Hautkrebs werden verschiedene Krebserkrankungen der Haut bezeichnet. Man unterscheidet den schwarzen und den hellen Hautkrebs. Laut Weltgesundheitsorganisation (WHO) steigt die Häufigkeit von Hautkrebs in den letzten Jahrzehnten kontinuierlich an. Weltweit erkranken jedes Jahr ungefähr 130.000 Menschen am sogenannten malignen Melanom, dem besonders aggressiv wachsenden schwarzen Hautkrebs. Betroffen sind vor allem Menschen im mittleren Lebensalter von 45 bis 60 Jahren. Wird Hautkrebs frühzeitig erkannt, besteht auch für den schwarzen Hautkrebs eine gute Heilungschance.
WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Dermatologie, Venerologie und Allergologie
Prof. Dr. Steffen Emmert und Priv.-Doz. Dr. Holger Hänßle,
Telefon 0551 / 39-6410
Robert-Koch-Str. 40, 37075 Göttingen
semmert@gwdg.de; haenssle@med.uni-goettingen.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.med.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Deutschlandweit erstes Gerät für hoch fokussierten Ultraschall bei Tremor und Parkinson
11.04.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Nuklearmedizinische Herzuntersuchungen – Neue Techniken, größere Präzision
09.04.2018 | Deutsche Gesellschaft für Nuklearmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics