Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen

12.06.2017

Ermutigende Ergebnisse zum Abschluss des Forschungsprojekts »BabyLux«: Ein neues optisches Diagnosesystem, das innerhalb von nur drei Jahren gemeinsam von neun Partnern aus vier europäischen Ländern entwickelt wurde, ist in der Lage, den Sauerstoffgehalt im Blut frühgeborener Babys nicht-invasiv und sicher zu bestimmen. Wird das Gerät nach weiteren klinischen Tests für den medizinischen Einsatz zugelassen, können Neugeborene damit vor schweren Schäden durch eine Sauerstoffunter- oder -überversorgung des Gehirns bewahrt werden.

Die neue optische Messsonde, die auf die Haut am Kopf der Babys aufgelegt wird, arbeitet mit parallelen Messungen anhand zweier Spektroskopieverfahren, der TRS (Time-resolved Spectroscopy) und der DCS (Diffuse Correlation Spectroscopy).


TRS/DCS-Hybrid-Sensor

Bildquelle: Fraunhofer IPT

So kann nicht-invasiv und dauerhaft die Sauerstoffversorgung im Gehirn überwacht werden, ohne sichtbare Spuren auf der empfindlichen Babyhaut zu hinterlassen. Das neue Messinstrument ist zudem so handlich konzipiert, dass es neben dem Kinderbett stehen kann und die regelmäßigen Messungen innerhalb von nur fünf Minuten durchgeführt sind.

Erfolgreiche Tests an 60 kleinen Probanden zeigen die Zuverlässigkeit des neuen Messsystems

Die Tests zweier Prototypen des neuen Diagnosesystems am Kopenhagener Rigshospitalet und am Mailänder Ospedale Maggiore Policlinico mit insgesamt 60 Neugeborenen bestätigen den Erfolg des Forschungsprojekts, das seit Anfang 2014 durch die Europäische Union gefördert wurde: Selbst wenn die Messsonde mehrfach an verschiedenen Stellen am Vorder- und Oberkopf der zumeist extrem kleinen Frühgeborenen aufgesetzt wird, erzielt sie zuverlässige Ergebnisse.

Ein Test, bei dem innerhalb von drei Minuten sechsmal für je 30 Sekunden DCS- und TR-NIRS-Signale (Time-resolved Near Infrared Spectroscopy) in der Frontoparietalregion am Kopf der Babys erhoben wurden, zeigte eine Varianz von weniger als fünf Prozent für die Messwerte der Sauerstoffversorgung des Gewebes.

Diese Werte übertreffen bereits jetzt die Ergebnisse konventioneller Messgeräte, wie sie heute in Frühgeborenenstationen eingesetzt werden. Der Index für den Blutfluss schwankte zwischen 15 und 25 Prozent, vergleichbar also mit den Ergebnissen transkranialer Doppler-Ultraschallmessungen, Xenon-Clearance-Tests oder anderen bereits bestehenden Verfahren.

Europaweit können mehr als 1000 Frühgeborene pro Jahr vor Folgeschäden bewahrt werden

Ziel des BabyLux-Projekts, das am 28. April 2017 mit einer umfassenden Ergebnispräsentation im Rahmen des öffentlichen Symposiums »Light-to-Cure« am Politecnico di Milano in Mailand abgeschlossen wurde, war die Entwicklung der neuen Messtechnik, mit der sich die Sauerstoffversorgung im Gehirn von Frühgeborenen, die vor der 28. Schwangerschaftswoche zur Welt gekommen sind, nicht-invasiv und schmerzfrei besonders exakt und zuverlässig messen lässt.

Deuten sich aufgrund der Messdaten Komplikationen an, können Mediziner nun mithilfe der neuen optischen Messtechnik schneller eingreifen und so das Risiko von Gehirnschädigungen und Spätfolgen wie Behinderungen senken. Wird das neue Messgerät zugelassen und kann sich in den Frühgeborenenstationen etablieren, könnten nach einer Schätzung der Forscher allein in Europa mehr als 1000 Kinder pro Jahr vor den Folgeschäden einer Sauerstoffunter- oder -überversorgung bewahrt werden.

Internationales, interdisziplinäres Projektkonsortium aus Medizinern und Messtechnikern will das neue System zur Marktreife führen

Im Projekt »BabyLux« wirkten neben dem Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen und der PicoQuant GmbH aus Berlin das ICFO-Institute of Photonic Sciences, die Hemophotonics SL und das Competitive Network SL aus Spanien, Capital Region aus Dänemark sowie die italienische Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico mit. Die Federführung des Projekts lag bei der italienischen Politecnico di Milano mit der Fondazione Politecnico di Milano. Die Europäische Kommission förderte »BabyLux« im ICT Policy Support Programme (ICT PSP) als Teil des »Competitiveness and Innovation«-Rahmenprogramms für drei Jahre und unterstützte auch die sechsmonatige Erprobungsphase in Mailand und Kopenhagen.

Das Fraunhofer-Institut für Produktionstechnologie IPT in Aachen hatte im Projekt die Aufgabe übernommen, eine kompakte faserbasierte Sonde für das System zu entwickeln, die parallele Messungen anhand zweier Spektroskopieverfahren ermöglicht. Die Berliner PicoQuant GmbH befasste sich mit der Entwicklung speziell gepulster Diodenlaser und einer sehr empfindlichen, zeitaufgelösten Detektion der Laserlichtanteile, die vom Blut absorbiert sowie zurückgestreut werden. Mit dem System kann jetzt nicht-invasiv und dauerhaft die Sauerstoffversorgung im Gehirn frühgeborener Babys überwacht werden. Die Integration dieser Komponenten in ein kliniktaugliches Gesamtsystem erfolgte anschließend beim spanischen Projektpartner Hemophotonics SL, der federführend bei der Kommerzialisierung des Systems ist.

In den kommenden Monaten soll eine weitere Reihe an Messungen stattfinden, um die Projektergebnisse in klinischen Studien zu konsolidieren und das neue Messinstrument zur Marktreife zu führen.

Alessandro Torricelli, Koordinator des BabyLux-Projekts und Associate Professor am Department of Physics des Politecnico di Milano freut sich über den gelungenen Projektabschluss: »Die Projektergebnisse geben uns die Hoffnung, einen Weg zu ebnen, um dieses neue Messinstrument in ein paar Jahren auf den Markt zu bringen. Denn auf diese Weise können wir die Frühgeborenenmedizin in die Lage versetzen, die Gesundheit unserer Kleinsten eng zu überwachen und sie so vor schweren Schäden zu beschützen.«

Weitere Informationen zum Prokekt Babylux:
www.babylux-project.eu

Kontakt

Dipl.-Phys. Niels König
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
Telefon +49 241 8904-113
niels.koenig@ipt.fraunhofer.de
www.ipt.fraunhofer.de

Dipl.-Phys. Rainer Erdmann
PicoQuant GmbH
Rudower Chaussee 29
12489 Berlin
Telefon +49 030 6392-6560
erdmann@picoquant.com
www.picoquant.com

Diese Presseinformation und ein druckfähiges Foto finden Sie auch im Internet unter
www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20170612_forschungsprojekt-babylux-neues-messinstrument-schuetzt-fruehgeborene-vor-gehirnschaedigungen.html

Weitere Informationen:

http://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20170612_forschungspro...

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Positron trifft Kernspin
19.09.2017 | Universitätsklinikum Ulm

nachricht Aktive Prothese verändert Hirnfunktionen von Schlaganfall-Patienten
15.09.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik