Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Filme vom schlagenden Herzen

12.06.2015

Einweihung des Magnetic Particle Imaging (MPI)-Labors an der Charité – Universitätsmedizin Berlin – Kooperationsprojekt mit der PTB – Grußwort von Bundesforschungsministerin Wanka

Einen Film vom Blutfluss im schlagenden Herzen zu drehen – die neue Technik des Magnetic Particle Imaging (MPI) macht es möglich. Das gänzlich neue Verfahren kann magnetische Eisenoxid-Nanopartikel mit hoher Empfindlichkeit und in hoher zeitlicher und räumlicher Auflösung im Körper nachweisen und so zum Beispiel Herz-Kreislauf-Probleme oder Tumore aufspüren helfen.

An der Charité – Universitätsmedizin Berlin wurde jetzt ein in Deutschland entwickeltes MPI-Gerät eingeweiht, das von der Deutschen Forschungsgemeinschaft im Rahmen einer Großgeräteinitiative mit knapp 4 Millionen Euro gefördert worden ist. Die Physikalisch-Technische Bundesanstalt (PTB) ist bei dem Projekt als Kooperationspartnerin beteiligt und sorgt für die messtechnische Charakterisierung der Nanopartikel. 


von links: Prof. Lutz Trahms (PTB), Prof. Johanna Wanka, (hinter Frau Wanka und kaum zu sehen: Prof. Dr. Bernd Hamm, Direktor der Klinik für Radiologie der Charité), Eva Braun, Steffen Krach, Prof. Matthias Taupitz (Charité), Prof. Joachim Ullrich (Präsident der PTB) (Foto: PTB, Marvin Rust)

Bundesforschungsministerin Johanna Wanka sagte in ihrem Grußwort: „Forschung führt zu neuen Diagnoseverfahren, die den Arzt unterstützen, Krankheiten schneller und eindeutiger zu erkennen. Wenn wir den menschlichen Körper besser verstehen, können wir auch eine wirkungsvollere Behandlung ermöglichen und den Patienten besser helfen.“

Schon jetzt lassen sich mit dem neuen Gerät dreidimensionale Filme des Blutflusses in schlagenden Mäuseherzen in Echtzeit generieren. Das Verfahren befindet sich in der experimentellen Erprobungsphase. Wenn es ausgereift ist, könnte es bei Herz-Kreislauf-Erkrankungen oder auch bei Krebs schneller und empfindlicher als der Positronen-Emissions-Tomograf (PET) und die Magnetresonanztomografie (MRT) Bilder erzeugen, die zu diagnostischen Ergebnissen führen. Pathologische Veränderungen im Millimeterbereich würden dann sofort sichtbar gemacht.

Das Magnetic Particle Imaging (MPI) ist eine ausgeklügelte magnetische Messtechnik. Sie empfängt Signale von durch den menschlichen Körper wandernden Sonden: ungiftigen magnetischen Eisenoxid-Nanopartikeln, die injiziert werden und im Blutkreislauf mitschwimmen. Weil diese magnetischen „Tracer“ auf ein eingestrahltes äußeres Magnetfeld reagieren, funken sie gewissermaßen ständig ihren Standort nach außen.

Ihre relativ schwachen Signale werden vom MPI-Gerät hochgenau und in Echtzeit erfasst, sodass sich der Blutfluss wie in einem Film beobachten lässt. Stauen sich die Tracer an einem Engpass am Herzen oder reichern sie sich in einem Tumor an, dann haben die Radiologen einen Hinweis auf eine ernste Erkrankung. „Vielleicht wird es schon in zehn Jahren möglich sein, gefährliche Arterienverengungen, Entzündungen, Degenerationen oder Tumore selbst bei diffusen Krankheitsbildern und Symptomen im Ganzkörperscan zu lokalisieren“, sagt Matthias Taupitz, Stellvertretender Direktor der Klinik für Radiologie am Campus Benjamin Franklin der Charité.

Der Radiologe ist der Leiter der DFG-geförderten Klinischen Forschergruppe „Magnetische Eisenoxid-Nanopartikel für die Zelluläre und Molekulare MR-Bildgebung“. Darin arbeiten Wissenschaftlerinnen und Wissenschaftler in neun Teilprojekten schon seit 2008 an der Entwicklung dieser kleinen Teilchen, die neben dem Einsatz im MPI auch in der Magnetresonanztomografie als Kontrastmittel dienen können.

Von Anfang an mit dabei: die Physikalisch-Technische Bundesanstalt (PTB), das nationale Metrologieinstitut Deutschlands, mit ihrer physikalischen Kompetenz. Ihre Aufgabe ist die umfassende messtechnische Charakterisierung der neu entwickelten Eisenoxid-Nanopartikel. „Denn natürlich müssen wir ganz genau kennen, was da als Tracer eingesetzt wird. Das ist wichtig für eine quantitative Interpretation der MPI-Bilder“, erläutert Lutz Trahms, der Leiter des PTB-Fachbereichs „Biosignale“.

Er und seine Kollegen nutzen dazu eine große Zahl unterschiedlicher Hightech-Messgeräte und verschiedene Messverfahren: Magnetsuszeptometrie, Magnetpartikelspektrometrie (MPS) sowie die in der PTB entwickelte Magnetrelaxometrie. Zudem entwickeln sie auf der Basis mathematischer Modelle Simulationsrechnungen, mit denen sie die experimentellen Untersuchungen vergleichen, um weitere grundlegende Erkenntnisse über die Nanopartikel und ihr Verhalten zu sammeln.

Pünktlich zur Einweihung des gemeinsamen Forschungslabors an der Charité auf dem Campus Virchow-Klinikum haben die Wissenschaftler der Charité ein MPI-taugliches Kontrastmittel parat, das nun in den nächsten Jahren gründlich getestet werden soll. Dabei wird natürlich auch die Erfahrung im Umgang mit dem neuen MPI-Verfahren wachsen. Aber schon jetzt sind sich alle Beteiligten einig: Mit der neuen Technik eröffnen sich faszinierende diagnostische Möglichkeiten.

Die DFG fördert das Projekt im Rahmen ihrer Großgeräteinitiative zum „Magnetic Particle Imaging“ mit knapp 4 Millionen Euro. Außerdem wird das Kooperationsprojekt im Rahmen des Verbundprojektes MAPIT vom Bundesministerium für Bildung und Forschung gefördert. Weitere Projektpartner neben der Charité und der PTB sind die Firmen Philips und Bruker als Entwickler der MPI-Technologie und Hersteller der präklinischen MPI-Scanner, das Pharmaunternehmen Bayer sowie die Universität Lübeck.

Ansprechpartner in der PTB

Dr. Lutz Trahms, Leiter des PTB-Fachbereichs "Biosignale"
Telefon: (030) 3481-7213
E-Mail: lutz.trahms(at)ptb.de

Ansprechpartner in der Charité

Prof. Dr. Matthias Taupitz, Klinik für Radiologie
Telefon: (030) 84453041
E-Mail: matthias.taupitz(at)charite.de

Erika Schow | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ptb.de/
http://www.charite.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Virtual Reality in der Medizin: Neue Chancen für Diagnostik und Operationsplanung
07.12.2016 | Universität Basel

nachricht Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten
06.12.2016 | University of Twente

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie