Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem hochaufgelöste Magnetresonanztomografie

17.10.2014

Zum ersten Mal konnten Wissenschaftler mittels Magnetresonanztomografie ein einziges Wasserstoffatom nachweisen. Damit wird die räumliche Auflösung der Technik massiv gesteigert. Künftig könnte sie auch verwendet werden, um Proteinstrukturen aufzuklären.

Mit einem üblichen, in der Klinik zum Einsatz kommenden Magnetresonanztomografen (englisch: MRI) können Details bis zu etwa einem Zehntel Millimeter sichtbar gemacht werden, zum Beispiel in Querschnittsbildern des menschlichen Körpers.

Wissenschaftler der ETH Zürich sind gemeinsam mit Kollegen der Universität Leipzig daran, diese Auflösung massiv zu steigern – auf die Grösse eines einzelnen Atoms, was etwa eine Million Mal kleiner ist. Mit einem von ihnen selbst entwickelten MRI-Gerät ist es ihnen erstmals gelungen, auf der Oberfläche eines Diamanten ein einzelnes Wasserstoffatom nachzuweisen.

Möglich war diese bedeutende Steigerung der Auflösung, weil die Forschenden unter der Leitung von Christian Degen, Professor am Laboratorium für Festkörperphysik der ETH Zürich, in ihrem MRI-Gerät eine andere Messtechnik verwendeten als in üblichen Magnetresonanztomografen im Spital.

In den bekannten Spitalgeräten wird die Magnetisierung der Atomkerne im menschlichen Körper mit einer elektromagnetischen Spule induktiv gemessen. «Die räumliche Auflösung dieser Technik ist heute weitgehend optimiert. Aus physikalischen Gründen lässt sich die Auflösung nicht mehr stark steigern», erklärt Degen. Die Wissenschaftler massen in ihrem Experiment die Magnetisierung hingegen mit einem neuartigen Diamantsensor in einer optischen Messanordnung mit einem Fluoreszenzmikroskop.

Fehlstelle im Diamant als Sensor

Der Sensor bestand aus einer sogenannten Stickstoff-Fehlstelle im Diamant. Dabei fehlen im sonst regelmässigen Kristallgitter an benachbarten Stellen zwei Kohlenstoffatome, wobei eines durch ein Stickstoffatom ersetzt ist. Diese Fehlstelle ist nicht nur fluoreszierend, sondern auch magnetisch, weshalb sie für extrem feine Magnetfeldmessungen geeignet ist.

Für ihr Experiment präparierten die Forschenden einen rund zwei mal zwei Millimeter grossen Diamanten so, dass einige Fehlstellen wenige Nanometer unter der Oberfläche zu liegen kamen. Über eine optische Messung der Magnetisierung konnten sie zeigen, dass sich in mehreren Fällen weitere magnetische Atomkerne in unmittelbarer Umgebung befanden.

«Die Quantenmechanik liefert dabei einen zweifelsfreien Beweis, dass es sich um einzelne Wasserstoffatomkerne handelt und nicht um eine Ansammlung mehrerer Wasserstoffatome», betont Degen. Ausserdem konnten die Wissenschaftler aus den Messdaten die Lage der magnetischen Atomkerne in Bezug zur Fehlstelle mit einer Genauigkeit von besser als einem Ångström (einem Zehnmillionstel Millimeter) eruieren.

Nano-MRI für die Strukturbiologie

«Dies ist ein wichtiger Zwischenschritt hin zur Kartierung von ganzen Molekülen», erklärt der ETH-Professor, der 2012 für seine Forschung auf dem Gebiet vom Europäischen Forschungsrat einen «ERC Starting Grant» erhielt. So möchten die Forschenden als nächstes versuchen, mit ihrem Nano-MRI-Gerät ein kleines Molekül zu vermessen. Doch auch wenn sich mit der Technik künftig eine Vielzahl von Atomen kartieren lässt, ist es weder das Ziel noch praktikabel, mit dieser Technik einen ganzen menschlichen Körper atomgenau zu kartieren.

Vielmehr ist es der Traum der Wissenschaftler, die Technik dereinst zur Aufklärung der räumlichen Struktur von Biomolekülen wie zum Beispiel Proteinen zu verwenden. Derzeit verwenden Wissenschaftler für Proteinstrukturaufklärung meist die Röntgenkristallografie. Dazu werden allerdings Kristalle gebraucht, die aus Milliarden von identischen Molekülen bestehen. Proteine zu kristallisieren ist jedoch vielen Fällen schwierig.

Erreichen die ETH-Physiker ihr Ziel, würde für die Bestimmung der Struktur im Prinzip ein einzelnes Molekül genügen. Ein weiterer Vorteil von Nano-MRI ist, dass man Atome durch Isotope gezielt markieren kann. Dies würde Biologen helfen, Fragestellungen zur Funktion von Proteinen besser untersuchen zu können.

Literaturhinweis

Loretz M, Rosskopf T, Boss JM, Pezzagna S, Meijer J, Degen CL: Single proton spin detection by diamond magnetometry. Science, Online-Veröffentlichung vom 16. Oktober 2014, doi: 10.1126/science.1259464

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/10/extrem-hoc...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Deutschlandweit erstes Gerät für hoch fokussierten Ultraschall bei Tremor und Parkinson
11.04.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Nuklearmedizinische Herzuntersuchungen – Neue Techniken, größere Präzision
09.04.2018 | Deutsche Gesellschaft für Nuklearmedizin e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics