Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem hochaufgelöste Magnetresonanztomografie

17.10.2014

Zum ersten Mal konnten Wissenschaftler mittels Magnetresonanztomografie ein einziges Wasserstoffatom nachweisen. Damit wird die räumliche Auflösung der Technik massiv gesteigert. Künftig könnte sie auch verwendet werden, um Proteinstrukturen aufzuklären.

Mit einem üblichen, in der Klinik zum Einsatz kommenden Magnetresonanztomografen (englisch: MRI) können Details bis zu etwa einem Zehntel Millimeter sichtbar gemacht werden, zum Beispiel in Querschnittsbildern des menschlichen Körpers.

Wissenschaftler der ETH Zürich sind gemeinsam mit Kollegen der Universität Leipzig daran, diese Auflösung massiv zu steigern – auf die Grösse eines einzelnen Atoms, was etwa eine Million Mal kleiner ist. Mit einem von ihnen selbst entwickelten MRI-Gerät ist es ihnen erstmals gelungen, auf der Oberfläche eines Diamanten ein einzelnes Wasserstoffatom nachzuweisen.

Möglich war diese bedeutende Steigerung der Auflösung, weil die Forschenden unter der Leitung von Christian Degen, Professor am Laboratorium für Festkörperphysik der ETH Zürich, in ihrem MRI-Gerät eine andere Messtechnik verwendeten als in üblichen Magnetresonanztomografen im Spital.

In den bekannten Spitalgeräten wird die Magnetisierung der Atomkerne im menschlichen Körper mit einer elektromagnetischen Spule induktiv gemessen. «Die räumliche Auflösung dieser Technik ist heute weitgehend optimiert. Aus physikalischen Gründen lässt sich die Auflösung nicht mehr stark steigern», erklärt Degen. Die Wissenschaftler massen in ihrem Experiment die Magnetisierung hingegen mit einem neuartigen Diamantsensor in einer optischen Messanordnung mit einem Fluoreszenzmikroskop.

Fehlstelle im Diamant als Sensor

Der Sensor bestand aus einer sogenannten Stickstoff-Fehlstelle im Diamant. Dabei fehlen im sonst regelmässigen Kristallgitter an benachbarten Stellen zwei Kohlenstoffatome, wobei eines durch ein Stickstoffatom ersetzt ist. Diese Fehlstelle ist nicht nur fluoreszierend, sondern auch magnetisch, weshalb sie für extrem feine Magnetfeldmessungen geeignet ist.

Für ihr Experiment präparierten die Forschenden einen rund zwei mal zwei Millimeter grossen Diamanten so, dass einige Fehlstellen wenige Nanometer unter der Oberfläche zu liegen kamen. Über eine optische Messung der Magnetisierung konnten sie zeigen, dass sich in mehreren Fällen weitere magnetische Atomkerne in unmittelbarer Umgebung befanden.

«Die Quantenmechanik liefert dabei einen zweifelsfreien Beweis, dass es sich um einzelne Wasserstoffatomkerne handelt und nicht um eine Ansammlung mehrerer Wasserstoffatome», betont Degen. Ausserdem konnten die Wissenschaftler aus den Messdaten die Lage der magnetischen Atomkerne in Bezug zur Fehlstelle mit einer Genauigkeit von besser als einem Ångström (einem Zehnmillionstel Millimeter) eruieren.

Nano-MRI für die Strukturbiologie

«Dies ist ein wichtiger Zwischenschritt hin zur Kartierung von ganzen Molekülen», erklärt der ETH-Professor, der 2012 für seine Forschung auf dem Gebiet vom Europäischen Forschungsrat einen «ERC Starting Grant» erhielt. So möchten die Forschenden als nächstes versuchen, mit ihrem Nano-MRI-Gerät ein kleines Molekül zu vermessen. Doch auch wenn sich mit der Technik künftig eine Vielzahl von Atomen kartieren lässt, ist es weder das Ziel noch praktikabel, mit dieser Technik einen ganzen menschlichen Körper atomgenau zu kartieren.

Vielmehr ist es der Traum der Wissenschaftler, die Technik dereinst zur Aufklärung der räumlichen Struktur von Biomolekülen wie zum Beispiel Proteinen zu verwenden. Derzeit verwenden Wissenschaftler für Proteinstrukturaufklärung meist die Röntgenkristallografie. Dazu werden allerdings Kristalle gebraucht, die aus Milliarden von identischen Molekülen bestehen. Proteine zu kristallisieren ist jedoch vielen Fällen schwierig.

Erreichen die ETH-Physiker ihr Ziel, würde für die Bestimmung der Struktur im Prinzip ein einzelnes Molekül genügen. Ein weiterer Vorteil von Nano-MRI ist, dass man Atome durch Isotope gezielt markieren kann. Dies würde Biologen helfen, Fragestellungen zur Funktion von Proteinen besser untersuchen zu können.

Literaturhinweis

Loretz M, Rosskopf T, Boss JM, Pezzagna S, Meijer J, Degen CL: Single proton spin detection by diamond magnetometry. Science, Online-Veröffentlichung vom 16. Oktober 2014, doi: 10.1126/science.1259464

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/10/extrem-hoc...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mehr Patientensicherheit: Neue Testmethoden für die Eignung von Implantaten für MRT-Untersuchungen
11.10.2017 | Ostbayerische Technische Hochschule Amberg-Weiden

nachricht DZHK-Studien: Strahlenfreie und nicht-invasive Diagnose der diastolischen Herzschwäche
10.10.2017 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise