Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem hochaufgelöste Magnetresonanztomografie

17.10.2014

Zum ersten Mal konnten Wissenschaftler mittels Magnetresonanztomografie ein einziges Wasserstoffatom nachweisen. Damit wird die räumliche Auflösung der Technik massiv gesteigert. Künftig könnte sie auch verwendet werden, um Proteinstrukturen aufzuklären.

Mit einem üblichen, in der Klinik zum Einsatz kommenden Magnetresonanztomografen (englisch: MRI) können Details bis zu etwa einem Zehntel Millimeter sichtbar gemacht werden, zum Beispiel in Querschnittsbildern des menschlichen Körpers.

Wissenschaftler der ETH Zürich sind gemeinsam mit Kollegen der Universität Leipzig daran, diese Auflösung massiv zu steigern – auf die Grösse eines einzelnen Atoms, was etwa eine Million Mal kleiner ist. Mit einem von ihnen selbst entwickelten MRI-Gerät ist es ihnen erstmals gelungen, auf der Oberfläche eines Diamanten ein einzelnes Wasserstoffatom nachzuweisen.

Möglich war diese bedeutende Steigerung der Auflösung, weil die Forschenden unter der Leitung von Christian Degen, Professor am Laboratorium für Festkörperphysik der ETH Zürich, in ihrem MRI-Gerät eine andere Messtechnik verwendeten als in üblichen Magnetresonanztomografen im Spital.

In den bekannten Spitalgeräten wird die Magnetisierung der Atomkerne im menschlichen Körper mit einer elektromagnetischen Spule induktiv gemessen. «Die räumliche Auflösung dieser Technik ist heute weitgehend optimiert. Aus physikalischen Gründen lässt sich die Auflösung nicht mehr stark steigern», erklärt Degen. Die Wissenschaftler massen in ihrem Experiment die Magnetisierung hingegen mit einem neuartigen Diamantsensor in einer optischen Messanordnung mit einem Fluoreszenzmikroskop.

Fehlstelle im Diamant als Sensor

Der Sensor bestand aus einer sogenannten Stickstoff-Fehlstelle im Diamant. Dabei fehlen im sonst regelmässigen Kristallgitter an benachbarten Stellen zwei Kohlenstoffatome, wobei eines durch ein Stickstoffatom ersetzt ist. Diese Fehlstelle ist nicht nur fluoreszierend, sondern auch magnetisch, weshalb sie für extrem feine Magnetfeldmessungen geeignet ist.

Für ihr Experiment präparierten die Forschenden einen rund zwei mal zwei Millimeter grossen Diamanten so, dass einige Fehlstellen wenige Nanometer unter der Oberfläche zu liegen kamen. Über eine optische Messung der Magnetisierung konnten sie zeigen, dass sich in mehreren Fällen weitere magnetische Atomkerne in unmittelbarer Umgebung befanden.

«Die Quantenmechanik liefert dabei einen zweifelsfreien Beweis, dass es sich um einzelne Wasserstoffatomkerne handelt und nicht um eine Ansammlung mehrerer Wasserstoffatome», betont Degen. Ausserdem konnten die Wissenschaftler aus den Messdaten die Lage der magnetischen Atomkerne in Bezug zur Fehlstelle mit einer Genauigkeit von besser als einem Ångström (einem Zehnmillionstel Millimeter) eruieren.

Nano-MRI für die Strukturbiologie

«Dies ist ein wichtiger Zwischenschritt hin zur Kartierung von ganzen Molekülen», erklärt der ETH-Professor, der 2012 für seine Forschung auf dem Gebiet vom Europäischen Forschungsrat einen «ERC Starting Grant» erhielt. So möchten die Forschenden als nächstes versuchen, mit ihrem Nano-MRI-Gerät ein kleines Molekül zu vermessen. Doch auch wenn sich mit der Technik künftig eine Vielzahl von Atomen kartieren lässt, ist es weder das Ziel noch praktikabel, mit dieser Technik einen ganzen menschlichen Körper atomgenau zu kartieren.

Vielmehr ist es der Traum der Wissenschaftler, die Technik dereinst zur Aufklärung der räumlichen Struktur von Biomolekülen wie zum Beispiel Proteinen zu verwenden. Derzeit verwenden Wissenschaftler für Proteinstrukturaufklärung meist die Röntgenkristallografie. Dazu werden allerdings Kristalle gebraucht, die aus Milliarden von identischen Molekülen bestehen. Proteine zu kristallisieren ist jedoch vielen Fällen schwierig.

Erreichen die ETH-Physiker ihr Ziel, würde für die Bestimmung der Struktur im Prinzip ein einzelnes Molekül genügen. Ein weiterer Vorteil von Nano-MRI ist, dass man Atome durch Isotope gezielt markieren kann. Dies würde Biologen helfen, Fragestellungen zur Funktion von Proteinen besser untersuchen zu können.

Literaturhinweis

Loretz M, Rosskopf T, Boss JM, Pezzagna S, Meijer J, Degen CL: Single proton spin detection by diamond magnetometry. Science, Online-Veröffentlichung vom 16. Oktober 2014, doi: 10.1126/science.1259464

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/10/extrem-hoc...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzforschung - Neue Katheterklappe in Tübingen entwickelt
16.01.2017 | Universitätsklinikum Tübingen

nachricht Fernüberwachung bei Herzschwäche kann Klinikaufenthalt ersparen
09.01.2017 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen