Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europas erstes fetales MEG-Gerät eröffnet am Uniklinikum Tübingen

17.07.2009
Untersuchung von Hirnaktivität und funktioneller Gehirnentwicklung beim Ungeborenen möglich

Am Universitätsklinikum Tübingen geht das europaweit einzige fetale Magnetenzephalographie-Zentrum zur Untersuchung der funktionellen Gehirnentwicklung und vorgeburtlichen Diagnostik in Betrieb.

Die fetale Magnetenzephalographie (fMEG) ist eine neue, nicht invasive Untersuchungsmethode in der Geburtshilfe, die Mutter und Kind nicht belastet.

Die Beurteilung der neurologischen Entwicklung des Ungeborenen war in der Geburtshilfe bislang nicht möglich, obwohl gerade das Gehirn ein sehr - oft irreversibel - verletzliches Organ darstellt. Mit dem fMEG kann jetzt die Aktivität und der Entwicklungstand des Gehirns gemessen werden. Zudem können die Herztätigkeit, die Kindsbewegung und die mütterliche Wehenaktivität registriert werden. Am Uniklinikum Tübingen wird mit dem Gerät innerhalb von Studien der Entwicklungsprozess des Fetus im Bauch erforscht.

Diese Grundlagenforschung dient der Ermittlung von Normwerten für einen späteren klinischen Einsatz. So hoffen die Wissenschaftler in etwa zwei Jahren das Risiko einer Frühgeburt aufgrund der Uterusaktivität vorhersagen zu können. In einer weiteren Studie werden Auswirkungen von bestimmten Vorerkrankungen der Mütter auf die Herzaktivitäten der Feten untersucht.

Die innovative Methode und das weltweit erste Modellgerät wurden in Zusammenarbeit von Instituten der Universität Tübingen und der University for Medical Sciences of Arkansas (Little Rock, Arkansas, USA) entwickelt. Dort ist es seit dem Jahr 2000 in Betrieb. Das Nachfolgegerät wurde nun am fMEG-Zentrum in Tübingen installiert. Angewandt wird das neue Verfahren in enger interdisziplinärer Zusammenarbeit von Universitäts-Frauenklinik, der Universitätsklinik für Kinder- und Jugendmedizin (Abteilungen Neonatologie und Entwicklungsneurologie), der Universitätsklinik für Neurologie und dem Institut für Medizinische Psychologie und Verhaltensneurobiologie Tübingen. Das fMEG-Zentrum wurde aufgrund der in Tübingen bestehenden hervorragenden Forschungs- und klinischen Voraussetzungen (MEG-Zentrum und Perinatalzentrum Tübingen) mittels einer DFG-Förderung und der Förderung des Landes eingerichtet.

Was ist ein Magnetenzephalogramm?
Die Magnetenzephalographie (MEG) ist eine nicht invasive Methode zur Messung sehr schwacher magnetischer Felder, wie sie in der menschlichen Hirnrinde entstehen. Die Technologie des MEG existiert seit 30 Jahren und wurde seither zur Untersuchung Erwachsener genutzt. Zur Messung der Hirnaktivität werden Magnetfelder über der Körperoberfläche abgeleitet. Hierzu werden hochsensible Sensoren - so genannte SQUIDs (superconducting quantum interference device) - verwendet. Diese Sensoren erlauben es, kleinste Magnetfelder bis zu femtoTesla (10-15 Tesla) zu registrieren (Erdmagnetfeld rund 10-4 Tesla, Hirnaktivität 10-13 Tesla). Das fMEG System umfasst 156 solcher Sensoren.
Das neue fetale Magnetenzephalogramm
Die neue Methode des fetalen Magnetenzephalogramm (fMEG) bietet, basierend auf dem bereits bekannten Verfahren des MEGs, die Möglichkeit, erstmals eine nicht invasive Zustands- und Funktionsbeschreibung der fetalen Hirnleistung im Mutterleib (intrauterin) vorzunehmen. Wie auch beim EEG kann die Hirnaktivität mit hoher zeitlicher und räumlicher Auflösung gemessen werden. Die EEG- Ableitung erfolgt jedoch über Elektroden, die direkt auf der Kopfoberfläche des Fetus angebracht werden. Dies ist erst nach einem Blasensprung möglich. Die Ableitung fetaler Magnetfelder per fMEG erfolgt nicht invasiv über die Bauchwand der Mutter und ist schon in früheren Schwangerschaftswochen möglich.

Aufgrund der geringen Feldstärke der biomagnetischen Signale ist das fMEG System in einer magnetischen Abschirmkammer installiert. Die 156 SQUID-Sensoren sind unterhalb einer Schale angebracht, in die sich die Mutter während der Untersuchung mit dem Bauch hineinlehnt und ihn durch die Schwerkraft auf das Sensorsystem drückt.

Was denkt, hört und sieht ein Kind im Mutterleib - was sagt uns das fMEG?
Die Fähigkeit zu Hören und zu Sehen beginnt ab der 20. Schwangerschaftswoche. Der Fortgang des Reifungsprozesses ist entscheidend für die gesamte spätere kognitive Entwicklung des Kindes wie beispielsweise für die Sprachentwicklung.

Zugleich kann die Registrierung der fetalen Hirnentwicklung Aufschluss über das fetale Befinden geben, insbesondere bei Risikoschwangerschaften. Cirka zehn Prozent aller Schwangerschaften werden heute wegen drohender intrauteriner Minderversorgung des Kindes durch einen Kaiserschnitt beendet. Besonders hoch ist dieser Anteil im Bereich der Risikoschwangerschaften, wie z.B. bei fetaler Wachstumsretardierung oder bei mütterlichen Erkrankungen wie Bluthochdruck und Diabetes. Die Entscheidung über das Vorgehen in diesen Fällen geschieht unter Abwägen der Risiken einer kindlichen Minderversorgung in utero zu den Risiken einer Frühgeburtlichkeit. Insbesondere hier ist die Beurteilung des kindlichen Zustandes von großer Wichtigkeit. Bislang werden Informationen über die Herztätigkeit und das Blut herangezogen. Anhand dieser Parameter wird auf einen Bedrohungszustand für das prognostisch relevante Organ, das Gehirn, geschlossen und der optimale Entbindungszeitpunkt bestimmt. Die direkte Möglichkeit zur Erfassung der kindlichen Hirnaktivität und Entwicklung fehlte bislang.

Zur Erfassung der Hirnaktivität werden auditorische Reize (Tonsignale) oder visuelle Stimuli (Lichtsignale) über der Bauchwand der Mutter dargeboten. Das fMEG registriert, ob und wie schnell das Kind diese Reize erfasst. Dazu wird die Reaktionszeit (Latenz) der durch die Licht- bzw. Tonsignale ausgelösten magnetischen Feldänderungen in der fetalen Hirnrinde erfasst und beurteilt. Auch die spontane Hirnaktivität, d.h. wenn kein Reiz dargeboten wird, kann registriert werden.

Mit dem fMEG können Rückschlüsse auf die Integrität und Entwicklung der kindlichen Hirnaktivität gezogen werden. Es liefert einen Einblick in die Hirnfunktion während der fetalen Entwicklung im Mutterleib und bietet die Möglichkeit der Überwachung und Sicherung der normalen Hirnentwicklung.

Zusätzlich erfasst das fMEG die kindlichen Herzaktionen, die kindlichen Bewegungen und die Kontraktionen der Gebärmutter. In Zusammenhang mit den erfassten Hirnströmen bietet das fMEG ein umfassendes Monitoring des Fetus.

Der Ablauf einer fMEG-Untersuchung
Bevor die fMEG-Aufzeichnung beginnt wird ein Ultraschall gemacht, um die Position, die Kopflokalisation und die Größe des Kindes zu bestimmen.

Metallische Gegenstände wie Schmuck, Uhren und Kleidungsverschlüsse würden die sehr sensiblen SQUID-Sensoren des Gerätes bei der Aufzeichnung stören. Deshalb werden diese vor der Aufzeichnung abgelegt und bequeme, metallfreie Kleidung angezogen.

Das Wohlbefinden der Schwangeren ist während der fMEG-Aufzeichnung wichtig. Eine Besonderheit des fetalen MEGs ist es, dass die Mutter sitzend und nicht auf dem Rücken liegend untersucht wird. Die Rückenposition kann bei Schwangeren zu Übelkeit und Kreislaufbeschwerden führen. Außerdem kann sich die Mutter uneingeschränkt bewegen und die angenehmste Position einnehmen. Dazu kann der Sitz des Gerätes sowie die Beinstützen und das Kissen zum Auflegen von Armen und Kopf individuell angepasst werden.

In dieser Sitzposition lehnt die Schwangere sich mit dem Bauch in die Schale des fMEG hinein, unterhalb der sich die SQUID-Sensoren befinden, die die magnetischen Signale des Fetus über die mütterliche Bauchwand hindurch empfangen.

Für die Stimulation mit Tönen befindet sich zwischen dem Bauch der Schwangeren und der Schale ein weicher, dünner Ballon, durch den die Töne während der Untersuchung gegeben werden. Für die visuelle Stimulation wird eine Lichtplatte aus Plastik auf den Bauch gelegt. Die Lichtreize bestehen aus rotem Licht, das die Bauchdecke durchdringen kann. Das Licht ist von geringer Intensität, es ist elfmal schwächer als Tageslicht.

An einem Bauchgurt befinden sich Marker (sogenannte Coils), die zur Markierung des fetalen Kopfes und der mütterliche Position dienen.
Die Untersuchung findet in einer magnetisch abgeschirmten Kammer statt. Die Patientin hat die Möglichkeit jederzeit per Video- und Lautsprechersystem Kontakt zum betreuenden Personal nach außen aufzunehmen.
Insgesamt dauert eine Messung etwa eine halbe Stunde, wobei dies verkürzt werden kann, sollte sich die Mutter auf dem Sitz unwohl fühlen.

Am Ende der Untersuchung wird per Ultraschall kontrolliert, ob und wie viel die kindliche Kopf- und Augenposition sich verändert hat.

Ansprechpartner für nähere Informationen:

fMEG Zentrum Tübingen
Otfried-Müller-Str. 47, 72076 Tübingen
Tel. 07071/29-8 76 58, E-Mail: UFK.FMEG@med.uni-tuebingen.de
Universitätsklinikum Tübingen
Frauenklinik
Calwerstr. 7, 72076 Tübingen
Dr. Harald Abele (Leitender Oberarzt Perinatalzentrum)
Tel. 07071/29-8 22 46, Fax 07071/29-22 02, E-Mail: harald.abele@med.uni-tuebingen.de
Institut für Medizinische Psychologie und Verhaltensneurobiologie
MEG-Zentrum
Dr. Hubert Preissl
Otfried-Müller-Str. 47, 72076 Tübingen
Tel. 07071/29-8 77 04, E-Mail: hubert.preissl@uni-tuebingen.de

Dr. Ellen Katz | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Herzforschung - Neue Katheterklappe in Tübingen entwickelt
16.01.2017 | Universitätsklinikum Tübingen

nachricht Fernüberwachung bei Herzschwäche kann Klinikaufenthalt ersparen
09.01.2017 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau