Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eröffnung des Heidelberger Ionenstrahl-Therapiezentrums (HIT) / Die bei GSI entwickelte Krebstherapie geht in den Routinebetrieb

02.11.2009
Am 2. November wird das Heidelberger Ionenstrahl-Therapiezentrum (HIT) feierlich eröffnet. Die am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entwickelte Krebstherapie steht nun erstmals im Routinebetrieb einer großen Patientenzahl zur Verfügung.

Bislang wurden Patienten ausschließlich am Therapieplatz bei GSI behandelt. Die Therapie mit Ionenstrahlen ist präzise, hochwirksam und für die Patienten sehr schonend. HIT wird vom Universitätsklinikum Heidelberg betrieben und steht in einem eigens errichteten Gebäude von etwa 60 Metern mal 80 Metern Grundfläche. Die Beschleunigeranlage und die Bestrahlungstechnik haben GSI-Wissenschaftler und -Techniker entwickelt und gebaut.

Die Behandlung mit Ionenstrahlen am HIT ist weltweit einmalig. Derzeit gibt es nur noch in Japan die Möglichkeit eine Krebstherapie mit Ionenstrahlen durchzuführen, allerdings mit einer weniger wirkungsvollen Bestrahlungstechnik. Im Rahmen eines Lizenzvertrages des GSI Helmholtzzentrums mit der Siemens AG sind weitere Anlagen nach dem Vorbild von HIT in Marburg und in Kiel bereits im Bau.

In Zukunft können jährlich 1.300 Patienten am HIT behandelt werden. Am GSI Therapieplatz wurden seit 1997 bisher rund 440 Patienten mit Tumoren vorwiegend an der Schädelbasis mit Kohlenstoff-Ionenstrahlen behandelt. In klinischen Studien wurde der Erfolg der Therapie mit Heilungsraten von bis zu 90 Prozent belegt. Sie ist inzwischen als Heilverfahren anerkannt und wird von den Krankenkassen erstattet.

Herzstück von HIT ist eine für die Therapie maßgeschneiderte Beschleunigeranlage, die für einen medizinischen Routinebetrieb geeignet ist. Sie ist wesentlich kleiner als die mehrere hundert Meter große GSI Beschleunigeranlage, die bislang für die Therapie benutzt wurde, und an der hauptsächlich Schwerionenexperimente für die Grundlagenforschung in der Kern- und Atomphysik durchgeführt werden. Vor der ersten Behandlung bei GSI betrieben Wissenschaftler jahrzehntelange Grundlagenforschung über die strahlenbiologische Wirkung von Ionen auf Zellen und entwickelten eine Bestrahlungstechnik, um den Ionenstrahl präzise und sicher in den Tumor zu lenken.

"Seit den 1970er Jahren haben wir die Wirkung von Ionenstrahlen an mehr als 100.000 Zellproben systematisch untersucht, immer mit dem Ziel einer optimierten Ionentherapie. Die meisten haben es damals kaum für möglich gehalten, die hervorragenden biologisch-medizinischen Eigenschaften von Ionenstrahlen technisch für die Therapie nutzbar zu machen. Dies war nur möglich durch das Zusammenwirken vieler Disziplinen wie Kern- und Atomphysik, Strahlenbiologie und -medizin, Beschleunigerphysik, Informatik und noch vielen mehr" sagt Gerhard Kraft, Initiator und Wegbereiter für die Therapie mit Ionenstrahlen und Helmholtz-Professor im Bereich Biophysik bei GSI.

"Mit der Eröffnung des HIT geht eine Vision in Erfüllung, die die Wissenschaftler um Professor Kraft vor fast 40 Jahren hatten: Menschen mit unheilbaren Tumoren im Routinebetrieb mit Ionenstrahlen zu behandeln. Die Therapie bietet höhere Heilungschancen, kürzere Behandlungsdauer und weniger Nebenwirkungen. Sie ist ein großartiges Beispiel für gelungenen Technologiertransfer aus der Grundlagenforschung zum Wohle der Menschheit", sagt Horst Stöcker, wissenschaftlicher Geschäftsführer des GSI Helmholtzzentrums und Vizepräsident der Helmholtz-Gemeinschaft.

HIT besteht aus einer Beschleunigeranlage mit einem 5 Meter langen Linearbeschleuniger und einem Ringbeschleuniger von 20 Metern Durchmesser. Daran schließen sich drei Behandlungsplätze an. Zwei Behandlungsplätze sind direkte Weiterentwicklungen der bei GSI verwendeten Technik. Ein dritter Behandlungsplatz besitzt ein drehbares Strahlführungssystem für Ionenstrahlen, eine so genannte Gantry, welche aus einem bei GSI entwickelten Prototypen hervorgegangen ist. Diese erlaubt es, den Ionenstrahl aus jeder beliebigen Richtung auf den Tumor eines Patienten zu lenken, was die Behandlungsmöglichkeiten erheblich erweitert.

Für die Behandlung am HIT werden Ionen, das heißt positiv geladene Kohlenstoff- oder Wasserstoffatome, verwendet. Ionenstrahlen dringen in den Körper ein und entfalten ihre größte Wirkung erst tief im Gewebe, dort wo sie in einem nur stecknadelkopfgroßen Bereich stecken bleiben. Damit sie das Tumorgewebe erreichen, werden sie in Beschleunigeranlagen auf sehr hohe Geschwindigkeiten von bis zu 75 Prozent der Lichtgeschwindigkeit gebracht. Das entspricht fast 1 Milliarde Kilometer pro Stunde. Die Ionenstrahlen können so gesteuert werden, dass Tumore bis zur Größe eines Tennisballs millimetergenau Punkt für Punkt bestrahlt werden können. Das umliegende gesunde Gewebe wird weitgehend geschont. Damit eignet sich die Methode vor allem für tiefliegende Tumore in der Nähe von Risikoorganen wie z.B. dem Sehnerv oder dem Hirnstamm. Projektpartner der Therapie mit Ionenstrahlen sind das Universitätsklinikum und das Deutsche Krebsforschungszentrum in Heidelberg, das Forschungszentrum Dresden-Rossendorf und das GSI Helmholtzzentrum für Schwerionenforschung.

Über die Entwicklung der Therapie

Am GSI Helmholtzzentrum wurden ab 1980 grundlegende Studien auf den Gebieten der Strahlenbiologie, Kernphysik und Beschleunigertechnik für die Therapie durchgeführt. Im Jahr 1993 begann der Bau des Therapieplatzes bei GSI in Darmstadt. In Zusammenarbeit mit dem Universitätsklinikum Heidelberg, dem Deutschen Krebsforschungszentrum in Heidelberg und dem Forschungszentrum Dresden-Rossendorf wurden seit 1997 etwa 440 Patienten erfolgreich behandelt. Parallel dazu wurde die dedizierte Klinikanlage HIT für den Routinebetrieb in Heidelberg geplant. HIT ist ein direkter Technologietransfer aus dem GSI-Pilotprojekt.

Die weltweit einzigartigen Innovationen des GSI-Pilotprojektes sind

- das Rasterscan-Verfahren, das eine tumorkonforme Bestrahlung des Tumors mit einem Strahl aus Kohlenstoff-Ionen ermöglicht

- ein Beschleuniger mit dem eine schnelle und aktive Energievariation des Ionenstrahls möglich ist, wodurch eine Tiefenvariation des Strahls im Tumor erreicht wird

- ein schnelles Kontrollsystem, das den Strahl im Patienten in einem Zeittakt von Millisekunden sicher steuert

- eine "biologiebasierte" Bestrahlungsplanung, die die physikalische Dosis und die effektive biologische Wirkung des Ionenstrahls an jedem Punkt im Tumor berechnet

- eine Kontrolle der Bestrahlung durch eine PET-(Positronen-Emissions-Tomographie)-Kamera, die überwacht, dass der Strahl den Tumor trifft

Über das GSI Helmholtzzentrum für Schwerionenforschung

GSI ist ein mit jährlich 90 Millionen Euro vom Bund und dem Land Hessen finanziertes Forschungszentrum der Helmholtz-Gemeinschaft in Darmstadt. Das Ziel der Forschung bei GSI ist es ein immer umfassenderes Bild der uns umgebenden Natur zu entwerfen. Dazu betreiben die über 1.000 GSI-Mitarbeiter eine weltweit einmalige Beschleunigeranlage für Ionenstrahlen. Über 1.000 Gast-Wissenschaftler aus aller Welt nutzen diese Beschleunigeranlage für Experimente in der Grundlagenforschung. Das Forschungsprogramm umfasst ein breites Spektrum, das von Kern- und Atomphysik über Plasma- und Materialforschung bis hin zur Biophysik reicht. Die wohl bekanntesten Resultate sind die Entdeckung von neuen chemischen Elementen und die Entwicklung einer neuartigen Tumortherapie mit Ionenstrahlen. Mit diesen und einer Vielzahl anderer wissenschaftlicher Resultate nimmt GSI eine international führende Position in der Forschung mit Ionenstrahlen ein. Um in den kommenden Jahren weiterhin Spitzenforschung zu betreiben, wird bei GSI das neue internationale Beschleunigerzentrum FAIR (Facility for Antiproton and Ion Research) errichtet. Dort wird eine große Vielfalt an Experimenten möglich sein, von denen Wissenschaftler neue Erkenntnisse über die Struktur der Materie und die Evolution des Universums erwarten.

Dr. Ingo Peter | idw
Weitere Informationen:
http://www.gsi.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics